Annals of Biomedical Engineering

, Volume 39, Issue 5, pp 1592–1605 | Cite as

Fluid Dynamics Analysis of a Novel Micropatterned Cell Bioreactor

  • Yuhong Cui
  • Bo Huo
  • Shujin Sun
  • Fan Yang
  • Yuxin Gao
  • Jun Pan
  • Mian Long
Article

Abstract

Although flow-based bioreactor has been widely used to provide sufficient mass transportation and nutrient supply for cell proliferation, differentiation, and apoptosis, the underlying mechanism of cell responses to applied flow at single cell level remains unclear. This study has developed a novel bioreactor that combines flow bioreactor with microfabrication technique to isolate individual cells onto micropatterned substrate. A mechanical model has also been developed to quantify the flow field or the microenvironment around the single cell; flow dynamics has been analyzed on five geometrically different patterns of circle-, cube-, 1:2 ellipse-, 1:3 ellipse-, and rectangle-shaped “virtual cells.” The results of this study have demonstrated that the flow field is highly pattern dependent, and all the hydrodynamic development length, cell spacing, and orientation of inlet velocity vector are crucial for maintaining a fully developed flow. This study has provided a theoretical basis for optimizing the design of micropatterned flow bioreactor and a novel approach to understand the cell mechanotransduction and cell–surface interaction at single cell level.

Keywords

Fluid dynamics Cell bioreactor Micropattern 

List of symbols

a, b, h

Length, width, height of an isolated cell

ATR

Active test region

(c − a)/a = (d  b)/b

Spacing ratio

c, d

Length, width of an unit

D

Hydrodynamic diameter (=2WH/(W + H))

Fb

Body force per unit mass

L, W, H

Length, width, height of a flow chamber

Linlet, Loutlet, Lwall

Inlet, outlet, wall length of a flow chamber

Linlet/D, Loutlet/D, Lwall/D

Non-dimensional hydrodynamic development inlet, outlet, wall length in a micropatterned flow chamber

\( L^{\prime}_{\text{inlet}} \), \( L^{\prime}_{\text{outlet}} \), \( L^{\prime}_{\text{wall}} \)

Applied inlet, outlet, wall length in a flow chamber when the computation is need

p

Pressure of flow field

pt

Relative pressure

Q

Flow flux of flowing fluid

Re

Reynolds number

u

Velocity vector of flowing fluid

α, β, γ

Non-dimensional hydrodynamic development lengths of inlet, outlet, wall in a cell seeded flow chamber

Θ, ∇

Substantive derivative, vector differential operator

μ

Dynamic viscosity of flowing fluid

ρ

Mass density of flowing fluid

Notes

Acknowledgments

The authors are grateful to Xin Wang, Yunfeng Wu, and Yabin Zhai for computational assistance. This study was supported by the following grants: the Natural Science Foundation of China, #30730032 and #30870606; Knowledge Innovation Program of CAS, #KJCX2-YW-L08; the National Key Basic Research Foundation of China, #2006CB910303; and the National High Technology Research and Development Program of China, #2007AA02Z306.

Conflict of interest statement

No conflict of interested is assigned to the manuscript.

Supplementary material

10439_2011_250_MOESM1_ESM.pdf (92 kb)
Supplementary material 1 (PDF 91 kb)

References

  1. 1.
    Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122:546–553, 2009.PubMedCrossRefGoogle Scholar
  2. 2.
    Atkinson, B., Mp. Brockleb, C. C. H. Card, and J. M. Smith. Low Reynolds number developing flows. AIChE J. 15(4):548–553, 1969.CrossRefGoogle Scholar
  3. 3.
    Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler. Thromb. Vasc. Biol. 19(4):996–1003, 1999.PubMedGoogle Scholar
  4. 4.
    Boschetti, F., M. T. Raimondi, F. Migliavacca, and G. Dubini. Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors. J. Biomech. 39(3):418–425, 2006.PubMedGoogle Scholar
  5. 5.
    Butcher, J., and R. M. Nerem. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tiss. Eng. 12(4):905–915, 2006.CrossRefGoogle Scholar
  6. 6.
    Chen, R. Y. Flow in entrance region at low Reynolds-numbers. J. Fluid Eng.-T ASME 95(1):153–158, 1973.CrossRefGoogle Scholar
  7. 7.
    Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307(2):355–361, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Chotard-Ghodsnia, R., O. Haddad, A. Leyrat, A. Drochon, C. Verdier, and A. Duperray. Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J. Biomech. 40(2):335–344, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Chung, B. J., A. M. Robertson, and D. G. Peters. The numerical design of a parallel plate flow chamber for investigation of endothelial cell response to shear stress. Comput. Struct. 81(8−11):535–546, 2003.CrossRefGoogle Scholar
  10. 10.
    Cioffi, M., F. Boschetti, M. T. Raimondi, and G. Dubini. Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol. Bioeng. 93(3):500–510, 2006.PubMedCrossRefGoogle Scholar
  11. 11.
    Cioffi, M., J. Kuffer, S. Strobel, G. Dubini, I. Martin, and D. Wendt. Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: macro-scale and micro-structured models. J. Biomech. 41(14):2918–2925, 2008.PubMedCrossRefGoogle Scholar
  12. 12.
    Davies, P. F. Flow-mediated endothelial mechanotransduction. Phys. Rev. 75(3):519–560, 1995.Google Scholar
  13. 13.
    De Paola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. Vasc. Biol. 12(11):1254–1257, 1992.Google Scholar
  14. 14.
    Fritton, S. P., and S. Weinbaum. Fluid and solute transport in bone: flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41:347–374, 2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Fung, Y. C., and S. Q. Liu. Elementary mechanics of the endothelium of blood vessels. J. Biomech. Eng. 115(1):1–12, 1993.PubMedCrossRefGoogle Scholar
  16. 16.
    Huo, B., X. L. Lu, C. T. Hung, K. D. Costa, Q. B. Xu, G. M. Whitesides, and X. E. Guo. Fluid flow induced calcium response in bone cell network. Cell. Mol. Bioeng. 1:58–66, 2008.PubMedCrossRefGoogle Scholar
  17. 17.
    Kadohama, T., K. Nishimura, Y. Hoshino, T. Sasajimaand, and B. E. Sumpio. Effects of different types of fluid shear stress on endothelial cell proliferation and survival. J. Cell. Physiol. 212(1):244–251, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Khismatullin, D. B., and G. A. Truskey. A 3D numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvasc. Res. 68(3):188–202, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Leclerc, E., B. David, L. Griscom, B. Lepioufle, T. Fujii, P. Layrolle, and C. Legallaisa. Study of osteoblastic cells in a microfluidic environment. Biomaterials 27(4):586–595, 2006.PubMedCrossRefGoogle Scholar
  20. 20.
    Levitan, I., B. P. Helmke, and P. F. Davies. A chamber to permit invasive manipulation of adherent cells in laminar flow with minimal disturbance of the flow field. Ann. Biomed. Eng. 28(10):1184–1193, 2000.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, D., T. Tang, J. Lu, and K. Dai. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tiss. Eng. A 15(10):2773–2783, 2009.CrossRefGoogle Scholar
  22. 22.
    Liu, S. Q., M. Yen, and Y. C. Fung. On measuring the third dimension of cultured endothelial cells in shear flow. Proc. Nat. Acad. Sci. 91(19):8782–8786, 1994.PubMedCrossRefGoogle Scholar
  23. 23.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282(21):2035–2042, 1999.CrossRefGoogle Scholar
  24. 24.
    Mattiussi, S., C. Lazzari, S. Truffa, A. Antonini, S. Soddu, M. C. Capogrossi, and C. Gaetano. Homeodomain interacting protein kinase 2 activation compromises endothelial cell response to laminar flow: protective role of p21(waf1,cip1,sdi1). PLoS ONE 4(8):e6603, 2009.Google Scholar
  25. 25.
    Morton, K. W., and E. Suli. Finite volume methods and their analysis. IMA J. Numer. Anal. 11(2):241–260, 1991.CrossRefGoogle Scholar
  26. 26.
    Myong, H. K., and T. Kobayashi. Prediction of 3-dimensional developing turbulent-flow in a square duct with an anisotropic low-Reynolds-number Kappa-Epsilon Model. J. Fluid Eng.-T ASME 113(4):608–615, 1991.CrossRefGoogle Scholar
  27. 27.
    Provin, C., K. Takano, Y. Sakai, T. Fujii, and R. Shirakashi. A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions. J. Biomech. 41:1436–1449, 2008.PubMedCrossRefGoogle Scholar
  28. 28.
    Rangaswami, H., N. Marathe, S. Zhuang, Y. Chen, J. C. Yeh, J. A. Frangos, G. R. Boss, and R. B. Pilz. Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. J. Biol. Chem. 284(22):14796–14808, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Robinson, A. J., D. Kashanin, F. O’Dowd, K. Fitzgerald, V. Williams, and G. M. Walsh. Fluvastatin and lovastatin inhibit granulocyte macrophage-colony stimulating factor-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin. Exp. Allergy 39(12):1866–1874, 2009.PubMedCrossRefGoogle Scholar
  30. 30.
    Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41(5):1005–1014, 2008.PubMedCrossRefGoogle Scholar
  31. 31.
    Su, S. S., and G. W. Schmid-Schonbein. Internalization of formyl peptide receptor in leukocytes subject to fluid stresses. Cell. Mol. Bioeng. 3:20–29, 2010.PubMedCrossRefGoogle Scholar
  32. 32.
    Sun, S. J., Y. X. Gao, N. J. Shu, Z. M. Tang, Z. L. Tao, and M. Long. A novel counter sheet-flow sandwich cell culture device for mammalian cell growth in space. Microgravity Sci. Technol. 20(2):115–120, 2008.CrossRefGoogle Scholar
  33. 33.
    Sun, H., C. K. Aidun, and U. Egertsdotter. Effects from shear stress on morphology and growth of early stages of Norway spruce somatic embryos. Biotechnol. Bioeng. 105(3):588–599, 2009.CrossRefGoogle Scholar
  34. 34.
    Swartz, M. A., and M. E. Fleury. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9:229–256, 2007.PubMedCrossRefGoogle Scholar
  35. 35.
    Szymanski, M. P., E. Metaxa, H. Meng, and J. Kolega. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann. Biomed. Eng. 36(10):1681–1689, 2008.PubMedCrossRefGoogle Scholar
  36. 36.
    ASME Steam Tables, 3rd ed., Am Soc Mech Engrs, 1977.Google Scholar
  37. 37.
    Webb, R. L. Single-phase heat transfer, friction, and fouling characteristics of three-dimensional cone roughness in tube flow. Int. J. Heat Mass Transf. 52:2624–2631, 2009.CrossRefGoogle Scholar
  38. 38.
    Webb, R. L., and N. H. Kim. Principles of Enhanced Heat Transfer, 2nd ed. New York: Taylor & Francis, 2005.Google Scholar
  39. 39.
    Wu, W. Y., and H. Mei. The oseen flow of finite clusters of spheres and the wake effect on the drag factor. Acta Mech. Sinica 2(4):289–304, 1986.CrossRefGoogle Scholar
  40. 40.
    You, L., S. Temiyasthit, S. R. Coyer, A. J. García, and C. R. Jacobs. Bone cells grown on micropatterned surfaces are more sensitive to fluid shear stress. Cell. Mol. Bioeng. 1:182–188, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Yuhong Cui
    • 1
  • Bo Huo
    • 2
    • 3
    • 4
  • Shujin Sun
    • 2
    • 3
    • 4
  • Fan Yang
    • 2
    • 3
    • 4
  • Yuxin Gao
    • 2
    • 3
    • 4
  • Jun Pan
    • 5
  • Mian Long
    • 2
    • 3
    • 4
  1. 1.Department of MechanicsTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Microgravity, Institute of MechanicsChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.National Microgravity LaboratoryBeijingPeople’s Republic of China
  4. 4.Center for Biomechanics and Bioengineering, Institute of MechanicsChinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.Bioengineering CollegeChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations