Annals of Biomedical Engineering

, Volume 38, Issue 9, pp 2937–2947 | Cite as

Cinemechanometry (CMM): A Method to Determine the Forces that Drive Morphogenetic Movements from Time-Lapse Images

  • P. Graham Cranston
  • Jim H. Veldhuis
  • Sriram Narasimhan
  • G. Wayne Brodland
Article

Abstract

Although cell-level mechanical forces are crucial to tissue self-organization in contexts ranging from embryo development to cancer metastases to regenerative engineering, the absence of methods to map them over time has been a major obstacle to new understanding. Here, we present a technique for constructing detailed, dynamic maps of the forces driving morphogenetic events from time-lapse images. Forces in the cell are considered to be separable into unknown active driving forces and known passive forces, where actomyosin systems and microtubules contribute primarily to the first group and intermediate filaments and cytoplasm to the latter. A finite-element procedure is used to estimate the field of forces that must be applied to the passive components to produce their observed incremental deformations. This field is assumed to be generated by active forces resolved along user-defined line segments whose location, often along cell edges, is informed by the underlying biology. The magnitudes and signs of these forces are determined by a mathematical inverse method. The efficacy of the approach is demonstrated using noisy synthetic data from a cross section of a generic invagination and from a planar aggregate that involves two cell types, edge forces that vary with time and a neighbor change.

Keywords

Cinemechanometry (CMM) Video force microscopy Cell mechanics Morphogenetic movements Driving forces Tissue mechanics Computational modeling Finite elements Inverse methods 

Notes

Acknowledgments

Funding for this project was provided by the Human Frontiers Science Program (HFSP). The authors thank Shane Hutson and Vito Conte for helpful discussions related to the manuscript.

References

  1. 1.
    Bausch, A. R., W. Moller, and E. Sackmann. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76:573–579, 1999.CrossRefPubMedGoogle Scholar
  2. 2.
    Brodland, G. W. The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. BioMech. Eng. 124:188–197, 2002.CrossRefPubMedGoogle Scholar
  3. 3.
    Brodland, G. W., D. I. Chen, and J. H. Veldhuis. A cell-based constitutive model for embryonic epithelia and other planar aggregates of biological cells. Int. J. Plast. 22:965–995, 2006.CrossRefGoogle Scholar
  4. 4.
    Brodland, G. W., D. Viens, and J. H. Veldhuis. A new cell-based FE model for the mechanics of embryonic epithelia. CMBBE 10:121–128, 2007.PubMedGoogle Scholar
  5. 5.
    Brodland, G. W., J. Yang, and J. Sweny. Cellular interfacial and surface tensions determined from aggregate compression tests using a finite element model. HFSP J. 3:273–281, 2009.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen, H. H., and G. W. Brodland. Cell-level finite element studies of viscous cells in planar aggregates. J. BioMech. Eng. 122:394–401, 2000.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, X., and G. W. Brodland. Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Phys. Biol. 5:015003 (15 pp), 2008.Google Scholar
  8. 8.
    Colombelli, J., E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer. In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic 6:1093–1102, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Conte, V., J. J. Muñoz, B. Baum, and M. Miodownik. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Phys. Biol. 6:16010, 2009.CrossRefGoogle Scholar
  10. 10.
    Cooper, J. E., and K. Worden. On-line physical parameter estimation with adaptive forgetting factors. Mech. Syst. Signal Process. 14:705–730, 2000.CrossRefGoogle Scholar
  11. 11.
    Davis, T. A. Direct Methods for Sparse Linear Systems. Philadelphia: SIAM, 2006.Google Scholar
  12. 12.
    Einstein, D. R., A. D. Freed, N. Stander, B. Fata, and I. Vesely. Inverse parameter fitting of biological tissues: a response surface approach. Ann. Biomed. Eng. 33:1819–1830, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Fortescue, T. R., L. S. Kershenbaum, and B. E. Ydstie. Implementation of self-tuning regulators with variable forgetting factors. Automatica 17:831–835, 1981.CrossRefGoogle Scholar
  14. 14.
    Freed, A. D. Anisotropy in hypoelastic soft-tissue mechanics, 1: theory. J. Mech. Mater. Struct. 3:911–928, 2008.CrossRefGoogle Scholar
  15. 15.
    Gregor, T., W. Bialek, R. R. de Ruyter van Steveninck, D. W. Tank, and E. F. Wieschaus. Diffusion and scaling during early embryonic pattern formation. Proc. Natl Acad. Sci. USA 102:18403–18407, 2005.CrossRefPubMedGoogle Scholar
  16. 16.
    Haykin, S. S. Modern Filters. New York: Macmillan, 1989.Google Scholar
  17. 17.
    Hibbeler, R. C. Mechanics of Materials. Englewood Cliffs, NJ: Prentice-Hall, 2005.Google Scholar
  18. 18.
    Hutson, M. S., Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Hutson, M. S., J. H. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland. Combining laser microsurgery and finite element modeling to asses cell-level epithelial mechanics. Biophys. J. 97:3075–3085, 2009.CrossRefPubMedGoogle Scholar
  20. 20.
    Hwang, M., K. J. Niermann, A. Lyshchik, and A. C. Fleischer. Sonographic assessment of tumor response: from in vivo models to clinical applications. Ultrasound Q. 25:175–183, 2009.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim, W., D. Tretheway, and S. Kohles. An inverse method for predicting tissue-level mechanics from cellular mechanical input. J. Biomech. 42:395–399, 2009.CrossRefPubMedGoogle Scholar
  22. 22.
    Krieg, M., Y. Arboleda-Estudillo, P.-H. Puech, J. Käfer, F. Graner, D. J. Müller, and C.-P. Heisenberg. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10:429–436, 2008.CrossRefPubMedGoogle Scholar
  23. 23.
    Lecuit, T., and P. Lenne. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8:633–644, 2007.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee, C., H. M. Scherr, and J. B. Wallingford. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change. Development 134:1431–1441, 2007.CrossRefPubMedGoogle Scholar
  25. 25.
    Ma, X., H. E. Lynch, P. C. Scully, and M. S. Hutson. Probing embryonic tissue mechanics with laser hole drilling. Phys. Biol. 6:036004, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Martin, A. C., M. Kaschube, and E. F. Wieschaus. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–499, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    Nash, J. C. Compact Numerical Methods for Computers. Bristol: Adam Hilget Ltd, 1979.Google Scholar
  28. 28.
    Ophir, J., S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc. Inst. Mech. Eng. H 213:203–233, 1999.PubMedGoogle Scholar
  29. 29.
    Paleologu, C., J. Benesty, and S. Ciochina. A robust variable forgetting factor recursive least-squares algorithm for system identification. IEEE Signal Process. Lett. 15:597–600, 2008.CrossRefGoogle Scholar
  30. 30.
    Puech, P., A. Taubenberger, F. Ulrich, M. Krieg, D. J. Muller, and C. Heisenberg. Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J. Cell Sci. 118:4199–4206, 2005.CrossRefPubMedGoogle Scholar
  31. 31.
    Rauzi, M., P. Verant, T. Lecuit, and P. F. Lenne. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10:1401–1410, 2008.CrossRefPubMedGoogle Scholar
  32. 32.
    Seshaiyer, P., and J. D. Humphrey. A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues. J. Biomech. Eng. 125:363–371, 2003.CrossRefPubMedGoogle Scholar
  33. 33.
    Valberg, P. A., and H. A. Feldman. Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys. J. 52:551–561, 1987.CrossRefPubMedGoogle Scholar
  34. 34.
    von Dassow, M., and L. Davidson. Natural variation in embryo mechanics: Gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness. Dev. Dyn. 238:2–18, 2009.CrossRefGoogle Scholar
  35. 35.
    Wallingford, J. B., and R. M. Harland. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 129:5815–5825, 2002.CrossRefPubMedGoogle Scholar
  36. 36.
    Wiebe, C., and G. W. Brodland. Tensile properties of embryonic epithelia measured using a novel instrument. J. BioMech. 38:2087–2094, 2005.CrossRefPubMedGoogle Scholar
  37. 37.
    Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhou, J., H. Y. Kim, and L. A. Davidson. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–688, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • P. Graham Cranston
    • 1
  • Jim H. Veldhuis
    • 1
  • Sriram Narasimhan
    • 1
  • G. Wayne Brodland
    • 1
    • 2
  1. 1.Department of Civil and Environmental EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations