Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology


Many problems in Biology and Engineering are governed by anisotropic reaction–diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction–diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

This is a preview of subscription content, log in to check access.



  1. 1.

    Aliev, R., and A. Panfilov. A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301, 1996.

  2. 2.

    Barad, M., and P. Colella. A fourth-order accurate local refinement method for Poisson’s equation. J. Comput. Phys. 209:1–18, 2005.

  3. 3.

    Bendahmane, M., R. Bürguer, and R. Ruiz-Baier. A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Methods Partial Differ. Equ. 2010. doi:10.1002/num.20495

  4. 4.

    Bernabeu, M. O., R. Bordas, P. Pathmanathan, J. Pitt-Francis, J. Cooper, A. Garny, D. J. Gavaghan, B. Rodriguez, J. A. Southern, and J. P. Whiteley. Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1895):1907–1930, 2009.

  5. 5.

    Buttari, A., and S. Filippone. PSBLAS 2.3 User’s Guide. University of Rome and Tor Vergata, 2008.

  6. 6.

    Cherry, E. M., H. S. Greenside, and C. S. Henriquez. A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84:1343–1346, 2000.

  7. 7.

    Cherry, E. M., H. S. Greenside, and C. S. Henriquez. Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos. 13(3):853–865, 2003.

  8. 8.

    Colli-Franzone, P., P. Deuflhard, B. Erdmann, J. Lang, and L. F. Pavarino. Adaptivity in space and time for reaction–diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28(3):942–962, 2006.

  9. 9.

    Colli-Franzone, P., and L. Pavarino. A parallel solver for reaction–diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 14(6):883–911, 2004.

  10. 10.

    Faber, G. M., and Y. Rudy. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78(5):2392–2404, 2000.

  11. 11.

    Felippa, C. Introduction to Finite Element Methods. Boulder: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 2007.

  12. 12.

    Fenton, F., E. Cherry, A. Karma, and W. Rappel. Modelling wave propagation in realistic heart geometries using the phase-field method. Chaos 15:1–11, 2005.

  13. 13.

    Ferrero, J. M., B. Trenor, B. Rodriguez, and J. Saiz. Electrical activity and reentry during acute regional myocardial ischemia: insights from simulations. Int. J. Bifurcat. Chaos. 13:3703–3715, 2003.

  14. 14.

    Garfinkel, A., Y. H. Kim, O. Voroshilovsky, Z. Qu, J. R. Kil, M. H. Lee, H. S. Karagueuzian, J. N. Weiss, and P. S. Chen. Preventing ventricular fibrillation by flattering cardiac restitution. Proc. Natl Acad. Sci. 97:6061–6066, 2000.

  15. 15.

    Geselowitz, D. B., and W. T. Miller III. A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng. 11:315–334, 1983.

  16. 16.

    Heidenreich, E. A., J. F. Rodriguez, F. J. Gaspar, and M. Doblare. Fourth order compact schemes with adaptive time step for monodomain reaction difusion equations. J. Comput. Appl. Math. 216:39–55, 2008.

  17. 17.

    Helm, P. A. A novel technique for quantifying variability of cardiac anatomy application to the dyssynchronous failing heart. PhD thesis, Johns Hopkins University, 2005.

  18. 18.

    Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Bioeng. 21:1–77, 1993.

  19. 19.

    Ho, S. P., and Y. L. Yeh. The use of 2d enriched elements with bubble functions for finite element analysis. Comput. Struct. 84(29–30):2081–2091, 2006.

  20. 20.

    Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewwog Cliffs, NJ: Prentice Hall Inc., 672 pp., 1987.

  21. 21.

    Hunter, P., A. Pullan, and B. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.

  22. 22.

    Katz, A. Physiology of the Heart. Philadelphia, USA: Lippincott Williams and Wilkins, 718 pp., 2001.

  23. 23.

    Karypis, G., and V. Kumar. METIS. A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. University of Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis, MN, version 4.0, 1998.

  24. 24.

    Keener, J., and J. Sneyd. Mathematical Physiology. New York: Springer-Verlag, 1148 pp., 2008.

  25. 25.

    Penland, R. C., D. M. Harrild, and C. S. Heniquez. Modeling impulse propagation and extracellular potential distributions in anisotropic cardiac tissue using a finite volume discretization. Comput. Visualizat. Sci. 4:215–226, 2000.

  26. 26.

    Qu, Z., and A. Garfinkel. An advanced algorithm for solving partial differential equations in cardiac conduction. IEEE Trans. Biomed. Eng. 46: 1166–1168, 1999.

  27. 27.

    Rodriguez, B., N. Trayanova, and D. Noble. Modeling cardiac ischemia. Ann. N Y Acad. Sci. 1080:395–414, 2006.

  28. 28.

    Rogers, J. M., and A. D. McCulloch. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41:743–757, 1994.

  29. 29.

    Rosamond, W., et al. Heart disease and stroke statistics—2008. Circulation 117:e25–e146, 2008.

  30. 30.

    Skouibine, K., N. Trayanova, and P. Moore. A numerical efficient method for simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 116:85–100, 2000.

  31. 31.

    Spotz, W. F., and G. F. Carey. Extension of high-order compact schemes to time-dependent problems. Numer. Methods Partial. Differ. Eq. 17:657–672, 2001.

  32. 32.

    Strang G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3):506–517, 1968.

  33. 33.

    Sundnes, J., B. F. Nielsen, K. A. Mardal, X. Cai, G. T. Lines, and A. Tveito. On the computational complexity of the bidomain and the monodomain models of electrophysiology. Ann. Biomed. Eng. 34:1088–1097, 2006.

  34. 34.

    Taggart, P., P. M. Sutton, T. Opthof, R. Coronel, T. Richard, W. Pugsley, and P. Kallis. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J. Mol. Cell Cardiol. 32(4):621–630, 2000.

  35. 35.

    ten Tusscher, K. H.W. J., D. Noble, P. J. Noble, and A.V. Panfilov. A model of human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H1573–H1589, 2004.

  36. 36.

    ten Tusscher, K. H. W. J., and A. V. Panfilov. Alternants and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291:H1088–H1100, 2006.

  37. 37.

    Trangenstein, J. A., and C. H. Kim. Operator splitting and adaptive mesh refinement for the Luo–Rudy I model. J. Comput. Phys. 196:645–679, 2004.

  38. 38.

    Trayanova, N., J. Eason, and F. Aguel. Computer simulations of cardiac defibrillation: a look inside the heart. Comput. Vis. Sci. 4:259–270, 2002.

  39. 39.

    Whiteley, J. P. Physiology driven adaptivity for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 35(9):1510–1520, 2007.

  40. 40.

    Whiteley, J. An efficient technique for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 36(8):1398–1408, 2008.

  41. 41.

    Wilson, E. L. The static condensation algorithm. Int. J. Numer. Methods Eng. 8(1):198–203, 1974.

  42. 42.

    Zienkiewicz, O. C., and R. L. Taylor. Finite Element Method, Vol. 1. Butterworth-Heinemann, Burlington, MA: Elsevier, 752 pp., 2005.

Download references

Author information

Correspondence to Elvio A. Heidenreich.

Additional information

Associate Editor Gerald Saidel oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heidenreich, E.A., Ferrero, J.M., Doblaré, M. et al. Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Ann Biomed Eng 38, 2331–2345 (2010).

Download citation


  • Cardiac modeling
  • Efficient numerical schemes
  • Pseudo-adaptive meshes
  • Macro finite elements
  • Monodomain equation
  • Reaction diffusion equations