Annals of Biomedical Engineering

, Volume 38, Issue 7, pp 2346–2357

Electrocardiogram Signals to Assess Zebrafih Heart Regeneration: Implication of Long QT Intervals

  • Fei Yu
  • Rongsong Li
  • Elizabeth Parks
  • Wakako Takabe
  • Tzung K. Hsiai


Zebrafish is an emerging model system for cardiac conduction and regeneration. Zebrafish heart regenerates after 20% ventricular resection within 60 days. Whether cardiac conduction phenotype correlated with cardiomyocyte regeneration remained undefined. Longitudinal monitoring of the adult zebrafish heart (n = 12) was performed in terms of atrial contraction (PR intervals), ventricular depolarization (QRS complex) and repolarization (heart rated corrected QTc interval). Baseline electrocardiogram (ECG) signals were recorded one day prior to resection and twice per week over 59 days. Immunostaining for gap junctions with anti-Connexin-43 antibody was compared between the sham (n = 5) and ventricular resection at 60 days post-resection (dpr) (n = 7). Heart rate variability, QTc prolongation and J-point depression developed in the resected group but not in the sham. Despite a trend toward heart rate variability in response to ventricular resection, the differences between the resected and sham fish were, by and large, statistically insignificant. At 10 dpr, J-point depression was statistically significant (sham: −0.179 ± 0.061 mV vs. ventricular resection: −0.353 ± 0.105 mV, p < 0.01, n = 7). At 60 days, histology revealed either cardiomyocyte regeneration (n = 4) or scar tissues (n = 3). J-point depression was no longer statistically significant at 59 dpr (sham: −0.114 ± 0.085 mV; scar tissue: −0.268 ± 0.178 mV, p > 0.05, n = 3; regeneration: −0.209 ± 0.119 mV, p > 0.05, n = 4). Despite positive Connexin-43 staining in the regeneration group, QTc intervals remained prolonged (sham: 325 ± 42 ms, n = 5; scar tissues: 534 ± 51 ms, p < 0.01, n = 3; regeneration: 496 ± 31 ms, p < 0.01, n = 4). Thus, we observed delayed electric repolarization in either the regenerated hearts or scar tissues. Moreover, early regenerated cardiomyocytes lacked the conduction phenotypes of the sham fish.


Microelectrodes Zebrafish heart regeneration QTc intervals Connexin-43 


  1. 1.
    Arnaout, R., T. Ferrer, J. Huisken, K. Spitzer, D. Y. Stainier, M. Tristani-Firouzi, and N. C. Chi. Zebrafish model for human long QT syndrome. Proc. Natl Acad. Sci. USA 104(27):11316–11321, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Bergmann, O., R. D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-Heider, S. Walsh, J. Zupicich, K. Alkass, B. A. Buchholz, H. Druid, S. Jovinge, and J. Frisen. Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102, 2009.CrossRefPubMedGoogle Scholar
  3. 3.
    Braunwald, E., D. P. Zipes, and P. Libby. Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, PA: W.B. Saunders Company, 2001.Google Scholar
  4. 4.
    Chang, G. Y., F. Cao, M. Krishnan, M. Huang, Z. Li, X. Xie, A. Y. Sheikh, G. Hoyt, R. C. Robbins, and T. Hsiai. Positron emission tomography imaging of conditional gene activation in the heart. J. Mol. Cell. Cardiol. 43(1):18–26, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Chi, N. C., R. M. Shaw, B. Jungblut, J. Huisken, T. Ferrer, R. Arnaout, I. Scott, D. Beis, T. Xiao, H. Baier, L. Y. Jan, M. Tristani-Firouzi, and D. Y. R. Stainier. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol. 6(5):1006–1019, 2008.CrossRefGoogle Scholar
  6. 6.
    Hahn, C., and M. A. Schwartz. The role of cellular adaptation to mechanical forces in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28(12):2101–2107, 2008.CrossRefPubMedGoogle Scholar
  7. 7.
    Hsieh, D. J. Y., and C. F. Liao. Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br. J. Pharmacol. 137(6):782, 2002.CrossRefPubMedGoogle Scholar
  8. 8.
    Keating, M. T. The long QT syndrome: a review of recent molecular genetic and physiologic discoveries. Medicine 75(1):1, 1996.CrossRefPubMedGoogle Scholar
  9. 9.
    Kehat, I., A. Gepstein, A. Spira, J. Itskovitz-Eldor, and L. Gepstein. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes. A novel in vitro model for the study of conduction. Circ. Res. 91(8):659–663, 2002.CrossRefPubMedGoogle Scholar
  10. 10.
    Kehat, I., D. Kenyagin-Karsenti, M. Snir, H. Segev, M. Amit, A. Gepstein, E. Livne, O. Binah, J. Itskovitz-Eldor, and L. Gepstein. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3):407–414, 2001.PubMedGoogle Scholar
  11. 11.
    Lien, C. L., M. Schebesta, S. Makino, G. J. Weber, and M. T. Keating. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 4(8):e260, 2006.CrossRefPubMedGoogle Scholar
  12. 12.
    Makkar, R. R., and P. S. Chen. Stem cell therapy for myocardial repair. J. Am. Coll. Cardiol. 42(12):2070–2072, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Milan, D. J., I. L. Jones, P. T. Ellinor, and C. A. MacRae. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am. J. Physiol. Heart Circ. Physiol. 291:H269–H273, 2006.CrossRefPubMedGoogle Scholar
  14. 14.
    Milan, D.J., A. M. Kim, J. R. Winterfield, I. L. Jones, A. Pfeufer, S. Sanna, D. E. Arking, A. H. Amsterdam, K. M. Sabeh, J. D. Mably, D. S. Rosenbaum, R. T. Peterson, A. Chakravarti, S. Kääb, D. M. Roden, and C. A. MacRae. Drug-sensitized zebrafish screen identifies multiple genes, including GINS3, as regulators of myocardial repolarization. Circulation 120(7):553–559, 2009.CrossRefPubMedGoogle Scholar
  15. 15.
    Milan, D. J., and C. A. MacRae. Animal models for arrhythmias. Cardiovasc. Res. 67(3):426–437, 2005.CrossRefPubMedGoogle Scholar
  16. 16.
    Nusslein-Volhard, C., and R. Dahm, Eds. Zebrafish. New York: Oxford University Press, 2002.Google Scholar
  17. 17.
    Poss, K. D., L. G. Wilson, and M. T. Keating. Heart regeneration in zebrafish. Science 298(5601):2188–2190, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Priori, S. G., P. J. Schwartz, C. Napolitano, R. Bloise, E. Ronchetti, M. Grillo, A. Vicentini, C. Spazzolini, J. Nastoli, and G. Bottelli. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 348(19):1866, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Raya, A., A. Consiglio, Y. Kawakami, C. Rodriguez-Esteban, and J. C. Izpisua-Belmonte. The zebrafish as a model of heart regeneration. Cloning Stem Cells 6(4):345–351, 2004.CrossRefPubMedGoogle Scholar
  20. 20.
    Reeve, J. L., A. M. Duffy, T. O’Brien, and A. Samali. Don’t lose heart—therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J. Cell Mol. Med. 9(3):609–622, 2005.CrossRefPubMedGoogle Scholar
  21. 21.
    Rosen, M. R., M. J. Janse, and A. L. Wit. Cardiac Electrophysiology: A Textbook. Austin, TX: Futura Publishing Company, 1990.Google Scholar
  22. 22.
    Sedmera, D., M. Reckova, A. de Almeida, M. Sedmerova, M. Biermann, J. Volejnik, A. Sarre, E. Raddatz, R. A. McCarthy, R. G. Gourdie, and R. P. Thompson. Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am. J. Physiol. Heart Circ. Physiol. 284(4):H1152–H1160, 2003.PubMedGoogle Scholar
  23. 23.
    Stainier, D. Y. Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2(1):39–48, 2001.CrossRefPubMedGoogle Scholar
  24. 24.
    Sun, P., Y. Zhang, F. Yu, E. Parks, A. Lyman, Q. Wu, L. Ai, C. H. Hu, Q. Zhou, K. Shung, C. L. Lien, and T. K. Hsiai. Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann. Biomed. Eng. 37(5):890–901, 2009.CrossRefPubMedGoogle Scholar
  25. 25.
    Surawicz, B., T. K. Knilans, and T. C. Chou. Chou’s Electrocardiography in Clinical Practice: Adult and Pediatric. Philadelphia, PA: W.B. Saunders Company, 2001.Google Scholar
  26. 26.
    Zheng, Z. J., J. B. Croft, W. H. Giles, and G. A. Mensah. Sudden cardiac death in the United States, 1989 to 1998. Circulation 104(18):2158, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Fei Yu
    • 1
  • Rongsong Li
    • 1
  • Elizabeth Parks
    • 1
  • Wakako Takabe
    • 1
  • Tzung K. Hsiai
    • 1
  1. 1.Department of Biomedical Engineering and Division of Cardiovascular MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations