Annals of Biomedical Engineering

, Volume 38, Issue 6, pp 1965–1976 | Cite as

Peptide Interfacial Biomaterials Improve Endothelial Cell Adhesion and Spreading on Synthetic Polyglycolic Acid Materials

  • Xin Huang
  • Stefan Zauscher
  • Bruce Klitzman
  • George A. Truskey
  • William M. Reichert
  • Daniel J. Kenan
  • Mark W. Grinstaff


Resorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed “interfacial biomaterials” (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K A 1 × 107 M−1) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70–120% increase in cell spreading from 30 to 60 minutes after plating.


PGA Surface modification IFBM Peptides RGD Biomaterials Scaffolds 



This work was supported by the National Institutes of Health (Grant 5R01EB000501 to MWG) and the North Carolina Biotechnology Center (Collaborative Funding Grant to DJK supporting XH). The authors thank Felix Yap for assistance with image analysis, and Erin Carruthers, PhD, for assistance with QCM-D.


  1. 1.
    Akiyama, S. K., and K. M. Yamada. The interaction of plasma fibronectin with fibroblastic cells in suspension. J. Biol. Chem. 260:4492–4500, 1985.PubMedGoogle Scholar
  2. 2.
    Anderson, J. M. Biological responses to materials. Annu. Rev. Mater. Res. 31:81–110, 2001.CrossRefGoogle Scholar
  3. 3.
    Barber, T. A., J. E. Ho, A. De Ranieri, A. S. Virdi, D. R. Sumner, and K. E. Healy. Peri-implant bone formation and implant integration strength of peptide-modified p(aam-co-eg/aac) interpenetrating polymer network-coated titanium implants. J. Biomed. Mater. Res. A 80:306–320, 2007.PubMedGoogle Scholar
  4. 4.
    Bencherif, S. A., A. Srinivasan, J. A. Sheehan, L. M. Walker, C. Gayathri, R. Gil, J. O. Hollinger, K. Matyjaszewski, and N. R. Washburn. End-group effects on the properties of peg-co-pga hydrogels. Acta Biomater. 5:1872–1883, 2009.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen, R., and J. A. Hunt. Biomimetic materials processing for tissue-engineering processes. J. Mater. Res. 17:3974–3979, 2007.Google Scholar
  6. 6.
    Cherny, R. C., M. A. Honan, and P. Thiagarajan. Site-directed mutagenesis of the arginine-glycine-aspartic acid in vitronectin abolishes cell adhesion. J. Biol. Chem. 268:9725–9729, 1993.PubMedGoogle Scholar
  7. 7.
    Cook, A. D., J. S. Hrkach, N. N. Gao, I. M. Johnson, U. B. Pajvani, S. M. Cannizzaro, and R. Langer. Characterization and development of rgd-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J. Biomed. Mater. Res. 35:513–523, 1997.CrossRefPubMedGoogle Scholar
  8. 8.
    Craig, W. S., S. Cheng, D. G. Mullen, J. Blevitt, and M. D. Pierschbacher. Concept and progress in the development of rgd-containing peptide pharmaceuticals. Biopolymers 37:157–175, 1995.CrossRefPubMedGoogle Scholar
  9. 9.
    Day, R. M., A. R. Boccaccini, S. Shurey, J. A. Roether, A. Forbes, L. L. Hench, and S. M. Gabe. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 25:5857–5866, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Garcia, A. J. Interfaces to control cell-biomaterial adhesive interactions. In: Polymers for Regenerative Medicine, edited by C. Werner. Springer, 2006, pp. 171–190.Google Scholar
  11. 11.
    Geiger, B., A. Bershadsky, R. Pankov, and K. M. Yamada. Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2:793–805, 2001.CrossRefPubMedGoogle Scholar
  12. 12.
    Healy, K. E. Molecular engineering of materials for bioreactivity. Curr. Opin. Solid State Mater. Sci. 4:381–387, 1999.CrossRefGoogle Scholar
  13. 13.
    Hersel, U., C. Dahmen, and H. Kessler. Rgd modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Heydarkhan-Hagvall, S., M. Esguerra, G. Helenius, R. Soderberg, B. R. Johansson, and B. Risberg. Production of extracellular matrix components in tissue-engineered blood vessels. Tissue Eng. 12:831–842, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Hook, F., B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing. Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem. 73:5796–5804, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Hubbell, J. A. Biomaterials in tissue engineering. Biotechnology 13:565–576, 1995.CrossRefPubMedGoogle Scholar
  17. 17.
    Jabbari, E., X. He, M. T. Valarmathi, A. S. Sarvestani, and W. Xu. Material properties and bone marrow stromal cells response to in situ crosslinkable rgd-functionalized lactide-co-glycolide scaffolds. J. Biomed. Mater. Res. A 89:124–137, 2009.PubMedGoogle Scholar
  18. 18.
    Jordan, S. W., and E. L. Chaikof. Novel thromboresistant materials. J. Vasc. Surg. 45:104A–115A, 2007.CrossRefGoogle Scholar
  19. 19.
    Kay, B. K., A. V. Kurakin, and R. Hyde-Deruyscher. From peptides to drugs via phage display. Drug Discovery Today 3:370–378, 1998.CrossRefGoogle Scholar
  20. 20.
    Kay, B. K., J. Winter, and J. Mccafferty. Phage Display of Peptides and Proteins. San Diego: Academic Press, 1996.Google Scholar
  21. 21.
    Kehoe, J. W., and B. K. Kay. Filamentous phage display in the new millennium. Chem. Rev. 105:4056–4072, 2005.CrossRefPubMedGoogle Scholar
  22. 22.
    Kenan, D. J., W. J. Strittmatter, and J. R. Burke. Phage display screening for peptides that inhibit polyglutamine aggregation. Methods Enzymol. 413:253–273, 2006.CrossRefPubMedGoogle Scholar
  23. 23.
    Kenan, D. J., E. B. Walsh, S. R. Meyers, G. A. O’toole, E. G. Carruthers, W. K. Lee, S. Zauscher, C. A. H. Prata, and M. W. Grinstaff. Peptide-peg amphiphiles as cytophobic coatings for mammalian and bacterial cells. Chem. Biol. 13:695–700, 2006.CrossRefPubMedGoogle Scholar
  24. 24.
    Khoo, X., P. Hamilton, G. A. O’toole, B. D. Snyder, D. J. Kenan, and M. W. Grinstaff. Directed assembly of pegylated-peptides for infection-resistant titanium implant coatings. J. Am. Chem. Soc. 131:10992–10997, 2009.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim, T. G., and T. G. Park. Biomimicking extracellular matrix: cell adhesive rgd peptide modified electrospun poly(d, l-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng. 12:221–233, 2006.CrossRefPubMedGoogle Scholar
  26. 26.
    Kohn, J., and R. Langer. Bioresorbable and bioerodible materials. In: An Introduction to Materials in Medicine, edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemon. San Diego: Academic Press, 1997, pp. 65–73.Google Scholar
  27. 27.
    Kriplani, U., and B. K. Kay. Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries. Curr. Opin. Biotechnol. 16:470–475, 2005.CrossRefPubMedGoogle Scholar
  28. 28.
    Lampin, M., R. Warocquier-Clérout, C. Legris, M. Degrange, and M. F. Sigot-Luizard. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J. Biomed. Mater. Res. A 36:99–108, 1998.CrossRefGoogle Scholar
  29. 29.
    Lee, K. B., D. J. Kim, Z. W. Lee, S. I. Woo, and I. S. Choi. Pattern generation of biological ligands on a biodegradable poly(glycolic acid) film. Langmuir 20:2531–2535, 2004.CrossRefPubMedGoogle Scholar
  30. 30.
    Li, H., T. H. Labean, and D. J. Kenan. Single-chain antibodies against DNA aptamers for use as adapter molecules on DNA tile arrays in nanoscale materials organization. Org. Biomol. Chem. 4:3420–3426, 2006.CrossRefPubMedGoogle Scholar
  31. 31.
    Liu, Y., X. Yu, R. Zhao, D. H. Shangguan, Z. Bo, and G. Liu. Real time kinetic analysis of the interaction between immunoglobulin g and histidine using quartz crystal microbalance biosensor in solution. Biosens. Bioelectron. 18:1419–1427, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    Lutolf, M. P., and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.CrossRefPubMedGoogle Scholar
  33. 33.
    Mclarty, A. J., M. R. Phillips, D. R. Holmes, Jr., and H. V. Schaff. Aortocoronary bypass grafting with expanded polytetrafluoroethylene: 12-year patency. Ann. Thorac. Surg. 65:1442–1444, 1998.CrossRefPubMedGoogle Scholar
  34. 34.
    Meyers, S. R., P. T. Hamilton, E. B. Walsh, D. J. Kenan, and M. W. Grinstaff. Endothelialization of titanium surfaces. Adv. Mater. 19:2492–2498, 2007.CrossRefGoogle Scholar
  35. 35.
    Meyers, S. R., D. J. Kenan, and M. W. Grinstaff. Enzymatic release of surface adsorbed rgd therapeutic from a cleavable peptide anchor. ChemMedChem 3:1645–1648, 2008.CrossRefPubMedGoogle Scholar
  36. 36.
    Meyers, S. R., K. Xiaojuan, X. Huang, E. B. Walsh, M. W. Grinstaff, and D. J. Kenan. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials. Biomaterials 30:277–285, 2009.CrossRefPubMedGoogle Scholar
  37. 37.
    Niklason, L. E., J. Gao, W. M. Abbott, K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.CrossRefPubMedGoogle Scholar
  38. 38.
    Olivieri, M. P., and K. S. Tweden. Human serum albumin and fibrinogen interactions with an adsorbed rgd-containing peptide. J. Biomed. Mater. Res. 46:355–359, 1999.CrossRefPubMedGoogle Scholar
  39. 39.
    Pierschbacher, M. D., and E. Ruoslahti. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33, 1984.CrossRefPubMedGoogle Scholar
  40. 40.
    Plow, E. F., T. A. Haas, L. Zhang, J. Loftus, and J. W. Smith. Ligand binding to integrins. J. Biol. Chem. 275:21785–21788, 2000.CrossRefPubMedGoogle Scholar
  41. 41.
    Quirk, R. A., W. C. Chan, M. C. Davies, S. J. Tendler, and K. M. Shakesheff. Poly(l-lysine)-grgds as a biomimetic surface modifier for poly(lactic acid). Biomaterials 22:865–872, 2001.CrossRefPubMedGoogle Scholar
  42. 42.
    Ratner, B. D., and S. J. Bryant. Biomaterials: where we have been and where we are going. Ann. Rev. Biomed. Eng. 6:41–75, 2004.CrossRefGoogle Scholar
  43. 43.
    Ratner, B. D., A. S. Hoffman, F. J. Schoen, and J. E. Lemons. Biomaterials Science: An Introduction to Materials in Medicine. San Diego: Academic Press, 2000.Google Scholar
  44. 44.
    Reed, A. M., and D. K. Gilding. Biodegradable polymers for use in surgery—poly(glycolic)-poly(lactic acid) homo and co-polymers. 2. In vitro degradation. Polymer 22:494–498, 1981.CrossRefGoogle Scholar
  45. 45.
    Ruoslahti, E. Rgd and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 12:697–715, 1996.CrossRefPubMedGoogle Scholar
  46. 46.
    Sanghvi, A. B., K. P. Miller, A. M. Belcher, and C. E. Schmidt. Fabricating novel biomimetic polymers using combinatorial peptide screening technologies. Abstracts of Papers of the American Chemical Society 227:U126, 2004.Google Scholar
  47. 47.
    Sanghvi, A. B., K. P. Miller, A. M. Belcher, and C. E. Schmidt. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat. Mater. 4:496–502, 2005.CrossRefPubMedGoogle Scholar
  48. 48.
    Shin, H., S. Jo, and A. G. Mikos. Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364, 2003.CrossRefPubMedGoogle Scholar
  49. 49.
    Smith, G. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317, 1985.CrossRefPubMedGoogle Scholar
  50. 50.
    Van Der Flier, A., and A. Sonnenberg. Function and interactions of integrins. Cell Tissue Res. 305:285–298, 2001.CrossRefPubMedGoogle Scholar
  51. 51.
    Varani, J., D. R. Inman, S. E. Fligiel, and W. J. Hillegas. Use of recombinant and synthetic peptides as attachment factors for cells on microcarriers. Cytotechnology 13:89–98, 1993.CrossRefPubMedGoogle Scholar
  52. 52.
    Vroman, L. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196:476–477, 1962.CrossRefPubMedGoogle Scholar
  53. 53.
    Wallace, C. S., J. C. Champion, and G. A. Truskey. Adhesion and function of human endothelial cells co-cultured on smooth muscle cells. Ann. Biomed. Eng. 35:375–386, 2007.CrossRefPubMedGoogle Scholar
  54. 54.
    Walsh, E. B., C. Middleton, M. J. Davis, D. J. Kenan, and M. W. Grinstaff. Multifunctional peptides as interfacial biomaterials. ACS Div. Polym. Chem. 43:753, 2002.Google Scholar
  55. 55.
    Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29:2941–2953, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Xin Huang
    • 1
  • Stefan Zauscher
    • 2
  • Bruce Klitzman
    • 1
    • 3
  • George A. Truskey
    • 1
  • William M. Reichert
    • 1
  • Daniel J. Kenan
    • 4
  • Mark W. Grinstaff
    • 5
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Mechanical Engineering and Material ScienceDuke UniversityDurhamUSA
  3. 3.Kenan Plastic Surgery Research LabsDuke University Medical CenterDurhamUSA
  4. 4.Department of PathologyDuke University Medical CenterDurhamUSA
  5. 5.Departments of Biomedical Engineering and ChemistryBoston UniversityBostonUSA

Personalised recommendations