Annals of Biomedical Engineering

, Volume 38, Issue 5, pp 1767–1779 | Cite as

Tensile Strain as a Regulator of Mesenchymal Stem Cell Osteogenesis

  • E. M. Kearney
  • E. Farrell
  • P. J. Prendergast
  • V. A. Campbell


A role for mechanical stimulation in the control of cell fate has been proposed and mechanical conditioning of mesenchymal stem cells (MSCs) is of interest in directing MSC behavior for tissue engineering applications. This study investigates strain-induced differentiation and proliferation of MSCs, and investigates the cellular mechanisms of mechanotransduction. MSCs were seeded onto a collagen-coated silicone substrate and exposed to cyclic tensile mechanical strain of 2.5% at 0.17 Hz for 1–14 days. To examine mechanotransduction, cells were strained in the presence of the stretch-activated cation channel (SACC) blocker, gadolinium chloride (GdCl3); the extracellular regulated kinase (ERK) inhibitor, U0126; the p38 inhibitor, SB203580; and the phosphatidylinosito1 3-kinase (PI3-kinase) inhibitor, LY294002. Following exposure to strain, the osteogenic markers Cbfα1, collagen type I, osteocalcin, and BMP2 were temporally expressed. Exposure to strain in the presence of GdCl3 (10 μM) reduced the induction of collagen I expression, thus identifying a role for SACC, at least in part, as mechanosensors in strain-induced MSC differentiation. The strain-induced synthesis of BMP2 was found to be reduced by inhibitors of the kinases, ERK, p38, and PI3 kinase. Additionally, mechanical strain reduced the rate of MSC proliferation. The identification of the mechanical control of MSC proliferation and the molecular link between mechanical stimulation and osteogenic differentiation has consequences for regenerative medicine through the development of a functional tissue engineering approach.


Mesenchymal stem cells Mechanical strain Osteogenic differentiation Proliferation Stretch-activated cation channels Mitogen-activated protein kinase PI3-kinase 


  1. 1.
    Altman, G. H., R. L. Horan, I. Martin, J. Farhadi, P. R. Stark, V. Volloch, J. C. Richmond, G. Vunjak-Novakovic, and D. L. Kaplan. Cell differentiation by mechanical stress. FASEB J. 16(2):270–272, 2002.PubMedGoogle Scholar
  2. 2.
    Bae, J. S., S. Gutierrez, R. Narla, J. Pratap, R. Devados, A. J. van Wijnen, J. L. Stein, G. S. Stein, J. B. Lian, and A. Javed. Reconstitution of Runx2/Cbfa1-null cells identifies a requirement for BMP2 signaling through a Runx2 functional domain during osteoblast differentiation. J. Cell. Biochem. 100(2):434–449, 2007.CrossRefPubMedGoogle Scholar
  3. 3.
    Brighton, C. T., B. Strafford, S. B. Gross, D. F. Leatherwood, J. L. Williams, and S. R. Pollack. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J. Bone Joint Surg. Am. 73(3):320–331, 1991.PubMedGoogle Scholar
  4. 4.
    Bruder, S. P., D. J. Fink, and A. I. Caplan. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell. Biochem. 56(3):283–294, 1994.CrossRefPubMedGoogle Scholar
  5. 5.
    Caetano-Lopes, J., H. Canhao, and J. E. Fonseca. Osteoblasts and bone formation. Acta Reumatol. Port. 32(2):103–110, 2007.PubMedGoogle Scholar
  6. 6.
    Caplan, A. I. Bone development and repair. Bioessays 6(4):171–175, 1987.CrossRefPubMedGoogle Scholar
  7. 7.
    Chao, E. Y., and N. Inoue. Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur. Cell. Mater. 6:72–84, 2003; discussion 84–5.PubMedGoogle Scholar
  8. 8.
    Charras, G. T., B. A. Williams, S. M. Sims, and M. A. Horton. Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys. J. 87(4):2870–2884, 2004.CrossRefPubMedGoogle Scholar
  9. 9.
    Danciu, T. E., R. M. Adam, K. Naruse, M. R. Freeman, and P. V. Hauschka. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett. 536(1–3):193–197, 2003.CrossRefPubMedGoogle Scholar
  10. 10.
    Ducy, P., C. Desbois, B. Boyce, G. Pinero, B. Story, C. Dunstan, E. Smith, J. Bonadio, S. Goldstein, C. Gundberg, A. Bradley, and G. Karsenty. Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452, 1996.CrossRefPubMedGoogle Scholar
  11. 11.
    Ducy, P., R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89(5):747–754, 1997.CrossRefPubMedGoogle Scholar
  12. 12.
    Farrell, E., F. J. O’Brien, P. Doyle, J. Fischer, I. Yannas, B. A. Harley, B. O’Connell, P. J. Prendergast, and V. A. Campbell. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng. 12(3):459–468, 2006.CrossRefPubMedGoogle Scholar
  13. 13.
    Franceschi, R. T., and G. Xiao. Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88(3):446–454, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Friedl, G., H. Schmidt, I. Rehak, G. Kostner, K. Schauenstein, and R. Windhager. Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: Transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthritis Cartilage 15(11):1293–1300, 2007.CrossRefPubMedGoogle Scholar
  15. 15.
    Gallea, S., F. Lallemand, A. Atfi, G. Rawadi, V. Ramez, S. Spinella-Jaegle, S. Kawai, C. Faucheu, L. Huet, R. Baron, and S. Roman-Roman. Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone 28(5):491–498, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Ge, C., G. Xiao, D. Jiang, and R. T. Franceschi. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 176(5):709–718, 2007.CrossRefPubMedGoogle Scholar
  17. 17.
    Ghazanfari, S., M. Tafazzoli-Shadpour, and M. A. Shokrgozar. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem. Biophys. Res. Commun. 388(3):601–605, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Ghosh-Choudhury, N., S. L. Abboud, R. Nishimura, A. Celeste, L. Mahimainathan, and G. G. Choudhury. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J. Biol. Chem. 277(36):33361–33368, 2002.CrossRefPubMedGoogle Scholar
  19. 19.
    Gross, T. S., S. L. Poliachik, B. J. Ausk, D. A. Sanford, B. A. Becker, and S. Srinivasan. Why rest stimulates bone formation: A hypothesis based on complex adaptive phenomenon. Exerc. Sport Sci. Rev. 32(1):9–13, 2004.CrossRefPubMedGoogle Scholar
  20. 20.
    Hall, B. K., and T. Miyake. All for one and one for all: Condensations and the initiation of skeletal development. Bioessays 22(2):138–147, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Hamilton, D. W., T. M. Maul, and D. A. Vorp. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: Implications for vascular tissue-engineering applications. Tissue Eng. 10(3–4):361–369, 2004.CrossRefPubMedGoogle Scholar
  22. 22.
    Hipskind, R. A., and G. Bilbe. MAP kinase signaling cascades and gene expression in osteoblasts. Front. Biosci. 3:d804–d816, 1998.PubMedGoogle Scholar
  23. 23.
    Jagodzinski, M., M. Drescher, J. Zeichen, S. Hankemeier, C. Krettek, U. Bosch, and M. van Griensven. Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur. Cell. Mater. 7:35–41, 2004; discussion 41.PubMedGoogle Scholar
  24. 24.
    Jaiswal, R. K., N. Jaiswal, S. P. Bruder, G. Mbalaviele, D. R. Marshak, and M. F. Pittenger. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275(13):9645–9652, 2000.CrossRefPubMedGoogle Scholar
  25. 25.
    Jansen, J. H., F. A. Weyts, I. Westbroek, H. Jahr, H. Chiba, H. A. Pols, J. A. Verhaar, J. P. van Leeuwen, and H. Weinans. Stretch-induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. J. Cell. Biochem. 93(3):542–551, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Karsenty, G. The complexities of skeletal biology. Nature 423(6937):316–318, 2003.CrossRefPubMedGoogle Scholar
  27. 27.
    Kaspar, D., W. Seidl, C. Neidlinger-Wilke, A. Beck, L. Claes, and A. Ignatius. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J. Biomech. 35(7):873–880, 2002.CrossRefPubMedGoogle Scholar
  28. 28.
    Kawarizadeh, A., C. Bourauel, W. Gotz, and A. Jager. Early responses of periodontal ligament cells to mechanical stimulus in vivo. J. Dent. Res. 84(10):902–906, 2005.CrossRefPubMedGoogle Scholar
  29. 29.
    Kearney, E. M., P. J. Prendergast, and V. A. Campbell. Mechanisms of strain-mediated mesenchymal stem cell apoptosis. J. Biomech. Eng. 130(6):061004, 2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Kent, R. L., J. K. Hoober, and G. T. Cooper. Load responsiveness of protein synthesis in adult mammalian myocardium: Role of cardiac deformation linked to sodium influx. Circ. Res. 64(1):74–85, 1989.PubMedGoogle Scholar
  31. 31.
    Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174(1):168–176, 1988.CrossRefPubMedGoogle Scholar
  32. 32.
    Kostenuik, P. J., B. P. Halloran, E. R. Morey-Holton, and D. D. Bikle. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells. Am. J. Physiol. 273(6 Pt 1):E1133–E1139, 1997.PubMedGoogle Scholar
  33. 33.
    Lai, C. F., and S. L. Cheng. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J. Biol. Chem. 277(18):15514–15522, 2002.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee, K. S., H. J. Kim, Q. L. Li, X. Z. Chi, C. Ueta, T. Komori, J. M. Wozney, E. G. Kim, J. Y. Choi, H. M. Ryoo, and S. C. Bae. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell. Biol. 20(23):8783–8792, 2000.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee, W. C., T. M. Maul, D. A. Vorp, J. P. Rubin, and K. G. Marra. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech. Model. Mechanobiol. 6(4):265–273, 2007.CrossRefPubMedGoogle Scholar
  36. 36.
    Mackie, E. J. Osteoblasts: Novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol. 35(9):1301–1305, 2003.CrossRefPubMedGoogle Scholar
  37. 37.
    Moretti, M., A. Prina-Mello, A. J. Reid, V. Barron, and P. J. Prendergast. Endothelial cell alignment on cyclically-stretched silicone surfaces. J. Mater. Sci. Mater. Med. 15(10):1159–1164, 2004.CrossRefPubMedGoogle Scholar
  38. 38.
    Morey, E. R., and D. J. Baylink. Inhibition of bone formation during space flight. Science 201(4361):1138–1141, 1978.CrossRefPubMedGoogle Scholar
  39. 39.
    Muller, G. B. Embryonic motility: Environmental influences and evolutionary innovation. Evol. Dev. 5(1):56–60, 2003.CrossRefPubMedGoogle Scholar
  40. 40.
    Nieponice, A., T. M. Maul, J. M. Cumer, L. Soletti, and D. A. Vorp. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J. Biomed. Mater. Res. A 81(3):523–530, 2007.PubMedGoogle Scholar
  41. 41.
    Nohe, A., S. Hassel, M. Ehrlich, F. Neubauer, W. Sebald, Y. I. Henis, and P. Knaus. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J. Biol. Chem. 277(7):5330–5338, 2002.CrossRefPubMedGoogle Scholar
  42. 42.
    Owen, T. A., M. Aronow, V. Shalhoub, L. M. Barone, L. Wilming, M. S. Tassinari, M. B. Kennedy, S. Pockwinse, J. B. Lian, and G. S. Stein. Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 143(3):420–430, 1990.CrossRefPubMedGoogle Scholar
  43. 43.
    Park, S. A., J. W. Shin, Y. I. Yang, Y. K. Kim, K. D. Park, J. W. Lee, I. H. Jo, and Y. J. Kim. In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks. Biomaterials 25(3):527–535, 2004.CrossRefPubMedGoogle Scholar
  44. 44.
    Petroff, M. G., S. H. Kim, S. Pepe, C. Dessy, E. Marban, J. L. Balligand, and S. J. Sollott. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat. Cell Biol. 3(10):867–873, 2001.CrossRefPubMedGoogle Scholar
  45. 45.
    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.CrossRefPubMedGoogle Scholar
  46. 46.
    Pratap, J., M. Galindo, S. K. Zaidi, D. Vradii, B. M. Bhat, J. A. Robinson, J. Y. Choi, T. Komori, J. L. Stein, J. B. Lian, G. S. Stein, and A. J. van Wijnen. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res. 63(17):5357–5362, 2003.PubMedGoogle Scholar
  47. 47.
    Prendergast, P. J., R. Huiskes, and K. Soballe. ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6):539–548, 1997.CrossRefPubMedGoogle Scholar
  48. 48.
    Robey, P. G., and J. D. Termine. Human bone cells in vitro. Calcif. Tissue Int. 37(5):453–460, 1985.CrossRefPubMedGoogle Scholar
  49. 49.
    Robling, A. G., D. B. Burr, and C. H. Turner. Recovery periods restore mechanosensitivity to dynamically loaded bone. J. Exp. Biol. 204(Pt 19):3389–3399, 2001.PubMedGoogle Scholar
  50. 50.
    Robling, A. G., F. M. Hinant, D. B. Burr, and C. H. Turner. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17(8):1545–1554, 2002.CrossRefPubMedGoogle Scholar
  51. 51.
    Rochefort, G. Y., P. Vaudin, N. Bonnet, J. C. Pages, J. Domenech, P. Charbord, and V. Eder. Influence of hypoxia on the domiciliation of mesenchymal stem cells after infusion into rats: Possibilities of targeting pulmonary artery remodeling via cells therapies? Respir. Res. 6:125, 2005.CrossRefPubMedGoogle Scholar
  52. 52.
    Rubin, J., T. C. Murphy, X. Fan, M. Goldschmidt, and W. R. Taylor. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J. Bone Miner. Res. 17(8):1452–1460, 2002.CrossRefPubMedGoogle Scholar
  53. 53.
    Sebastine, I. M., and D. J. Williams. The role of mechanical stimulation in engineering of extracellular matrix (ECM). Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3648–3651, 2006.CrossRefPubMedGoogle Scholar
  54. 54.
    Shea, J. E., S. C. Miller, D. C. Poole, and J. P. Mattson. Cortical bone dynamics, strength, and densitometry after induction of emphysema in hamsters. J. Appl. Physiol. 95(2):631–634, 2003.PubMedGoogle Scholar
  55. 55.
    Simmons, C. A., S. Matlis, A. J. Thornton, S. Chen, C. Y. Wang, and D. J. Mooney. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 36(8):1087–1096, 2003.CrossRefPubMedGoogle Scholar
  56. 56.
    Song, G., Y. Ju, X. Shen, Q. Luo, Y. Shi, and J. Qin. Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surf. B Biointerfaces 58(2):271–277, 2007.CrossRefPubMedGoogle Scholar
  57. 57.
    Srinivasan, S., D. A. Weimer, S. C. Agans, S. D. Bain, and T. S. Gross. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J. Bone Miner. Res. 17(9):1613–1620, 2002.CrossRefPubMedGoogle Scholar
  58. 58.
    Suzawa, M., I. Takada, J. Yanagisawa, F. Ohtake, S. Ogawa, T. Yamauchi, T. Kadowaki, Y. Takeuchi, H. Shibuya, Y. Gotoh, K. Matsumoto, and S. Kato. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB 1/NIK cascade. Nat. Cell Biol. 5(3):224–230, 2003.CrossRefPubMedGoogle Scholar
  59. 59.
    Suzuma, K., K. Naruse, I. Suzuma, N. Takahara, K. Ueki, L. P. Aiello, and G. L. King. Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J. Biol. Chem. 275(52):40725–40731, 2000.CrossRefPubMedGoogle Scholar
  60. 60.
    Turner, C. H. Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407, 1998.CrossRefPubMedGoogle Scholar
  61. 61.
    van Griensven, M., S. Diederichs, and C. Kasper. Mechanical strain of bone marrow stromal cells induces proliferation and differentiation into osteoblast-like cells. In: Topics in Tissue Engineering, edited by N. R. Ashammakhi and R.L. Reis, 2005 (E-book).Google Scholar
  62. 62.
    Wang, F. S., C. J. Wang, S. M. Sheen-Chen, Y. R. Kuo, R. F. Chen, and K. D. Yang. Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J. Biol. Chem. 277(13):10931–10937, 2002.CrossRefPubMedGoogle Scholar
  63. 63.
    Ward, Jr., D. F., W. A. Williams, N. E. Schapiro, G. L. Weber, S. R. Christy, M. Salt, R. F. Klees, A. Boskey, and G. E. Plopper. Focal adhesion kinase signaling controls cyclic tensile strain enhanced collagen I-induced osteogenic differentiation of human mesenchymal stem cells. Mol. Cell. Biomech. 4(4):177–188, 2007.PubMedGoogle Scholar
  64. 64.
    Yamaguchi, A., T. Komori, and T. Suda. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr. Rev. 21(4):393–411, 2000.CrossRefPubMedGoogle Scholar
  65. 65.
    Ziros, P. G., A. P. Gil, T. Georgakopoulos, I. Habeos, D. Kletsas, E. K. Basdra, and A. G. Papavassiliou. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J. Biol. Chem. 277(26):23934–23941, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • E. M. Kearney
    • 1
  • E. Farrell
    • 1
  • P. J. Prendergast
    • 1
  • V. A. Campbell
    • 1
    • 2
  1. 1.Trinity Centre for Bioengineering, School of EngineeringTrinity College DublinDublin 2Ireland
  2. 2.Department of Physiology, School of MedicineTrinity College DublinDublin 2Ireland

Personalised recommendations