Annals of Biomedical Engineering

, Volume 38, Issue 6, pp 1989–2003 | Cite as

Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

  • Paulette SpencerEmail author
  • Qiang Ye
  • Jonggu Park
  • Elizabeth M. Topp
  • Anil Misra
  • Orestes Marangos
  • Yong Wang
  • Brenda S. Bohaty
  • Viraj Singh
  • Fabio Sene
  • John Eslick
  • Kyle Camarda
  • J. Lawrence Katz


Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface.


Adhesive/dentin interfacial bond Structure Physico-chemical stresses Bonding durability Adhesive development 



The authors gratefully acknowledge research support from NIDCR grants DE14392 (PS) and K23DE/HD00468 (BSB).


  1. 1.
    Andersson-Wenckert, I. E., J. W. van Dijken, and C. Kieri. Durability of extensive Class II open-sandwich restorations with a resin-modified glass ionomer cement after 6 years. Am. J. Dent. 17:43–50, 2004.PubMedGoogle Scholar
  2. 2.
    Beazoglou, T., S. Eklund, D. Heffley, J. Meiers, L. J. Brown, and H. Bailit. Economic impact of regulating the use of amalgam restorations. Public Health Rep. 122:657–663, 2007.PubMedGoogle Scholar
  3. 3.
    Bernardo, M., H. Luis, M. D. Martin, B. G. Leroux, T. Rue, J. Leitao, and T. A. DeRouen. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J. Am. Dent. Assoc. 138:775–783, 2007.PubMedGoogle Scholar
  4. 4.
    Bohaty, B. S. Ph.D. Dissertation. Kansas City: University of Missouri-Kansas City, 2010.Google Scholar
  5. 5.
    Brannstrom, M. Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper. Dent. 9:57–68, 1984.PubMedGoogle Scholar
  6. 6.
    Breschi, L., A. Mazzoni, A. Ruggeri, M. Cadenaro, R. Di Lenarda, and E. De Stefano Dorigo. Dental adhesion review: aging and stability of the bonded interface. Dent. Mater. 24:90–101, 2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Burrow, M. F., M. Satoh, and J. Tagami. Dentin durability after three years using a dentin bonding agent with and without priming. Dent. Mater. 12:302–307, 1996.PubMedCrossRefGoogle Scholar
  8. 8.
    Butler, W. T. Dentin extracellular matrix and dentinogenesis. Oper. Dent. Supplement 5:18–23, 1992.Google Scholar
  9. 9.
    Collins, C. J., R. W. Bryant, and K. L. V. Hodge. A clinical evaluation of posterior composite resin restorations: 8-year findings. J. Dent. 26:311–317, 1998.PubMedCrossRefGoogle Scholar
  10. 10.
    De Munck, J., K. Van Landuyt, M. Peumans, A. Poitevin, P. Lambrechts, M. Braem, and B. Van Meerbeek. A critical review of the durability of adhesion to tooth tissue: methods and results. J. Dent. Res. 84:118–132, 2005.PubMedCrossRefGoogle Scholar
  11. 11.
    DeRouen, T. A., M. D. Martin, B. G. Leroux, B. D. Townes, J. S. Woods, J. Leitao, A. Castro-Caldes, H. Luis, M. Bernardo, G. Rosenbaum, and I. P. Martins. Neurobehavioral effects of dental amalgam in children: a randomized clinical trial. JAMA 295:1784–1792, 2006.PubMedCrossRefGoogle Scholar
  12. 12.
    Donmez, N., S. Belli, D. H. Pashley, and F. R. Tay. Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives. J. Dent. Res. 84:355–359, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Drummond, J. L. Degradation, fatigue, and failure of resin dental composite materials. J. Dent. Res. 87:710–719, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Eick, J. D. Smear layer—materials surface. Proc. Finn. Dent. Soc. 88(Suppl. 1):225–242, 1992.PubMedGoogle Scholar
  15. 15.
    Eick, J. D., C. M. Cobb, R. P. Chappell, P. Spencer, and S. J. Robinson. The dentinal surface: its influence on dentinal adhesion. Part III. Quint. Int. 24:571–582, 1993.Google Scholar
  16. 16.
    Eick, J. D., A. J. Gwinnet, D. H. Pashley, and S. J. Robinson. Current concepts on adhesion to dentin. Crit. Rev. Oral Biol. Med. 8:306–335, 1997.PubMedCrossRefGoogle Scholar
  17. 17.
    Eick, J. D., R. A. Wilko, C. H. Anderson, and S. Sorenson. Scanning electron microscopy and electron microprobe analysis of cut tooth surfaces. J. Dent. Res. 49:1359–1368, 1970.PubMedGoogle Scholar
  18. 18.
    Erickson, R. L. Surface interactions of dentin adhesive materials. Oper. Dent. Supplement 5:81–94, 1992.Google Scholar
  19. 19.
    Eslick, J., Q. Ye, J. Park, E. M. Topp, P. Spencer, and K. V. Camarda. A computational molecular design framework for crosslinked polymer networks. Comput. Chem. Eng. 33:954–963, 2009.CrossRefGoogle Scholar
  20. 20.
    Ferracane, J. L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 22:211–222, 2006.PubMedCrossRefGoogle Scholar
  21. 21.
    Finer, Y., F. Jaffer, and J. P. Santerre. Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials 25:1787–1793, 2004.PubMedCrossRefGoogle Scholar
  22. 22.
    Finer, Y., and J. P. Santerre. The influence of resin chemistry on a dental composite’s biodegradation. J. Biomed. Mater. Res. 69A:233–246, 2004.CrossRefGoogle Scholar
  23. 23.
    Finer, Y., and J. P. Santerre. Salivary esterase activity and its association with the biodegradation of dental composites. J. Dent. Res. 83:22–26, 2004.PubMedCrossRefGoogle Scholar
  24. 24.
    Frankenberger, R., D. H. Pashley, S. M. Reich, U. Lohbauer, A. Petschelt, and F. R. Tay. Characterisation of resin-dentine interfaces by compressive cyclic loading. Biomaterials 26:2043–2052, 2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Garberoglio, P. The ratio of the densities of dentinal tubules on the cervical and axial wall in cavities. Quint. Int. 25:49–52, 1994.Google Scholar
  26. 26.
    Guo, X., P. Spencer, Y. Wang, Q. Ye, X. Yao, and K. Williams. Effects of a solubility enhancer on penetration of hydrophobic component in model adhesives into wet demineralized dentin. Dent. Mater. 23:1473–1481, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    Gwinnett, A. J. Altered tissue contribution to interfacial bond strength with acid conditioned dentin. Am. J. Dent. 7:243–246, 1994.PubMedGoogle Scholar
  28. 28.
    Gwinnett, A. J. Chemically conditioned dentin: a comparison of conventional and environmental scanning electron microscopy findings. Dent. Mater. 10:150–155, 1994.PubMedCrossRefGoogle Scholar
  29. 29.
    Gwinnett, A. J. Dentin bond strength after air drying and rewetting. Am. J. Dent. 7:144–148, 1994.PubMedGoogle Scholar
  30. 30.
    Gwinnett, A. J. Quantitative contribution of resin infiltration/hybridization to dentin bonding. Am. J. Dent. 6:7–9, 1993.PubMedGoogle Scholar
  31. 31.
    Gwinnett, A. J., F. R. Tay, K. M. Pang, and S. H. Y. Wei. Quantitative contribution of the collagen network in dentin hybridization. Am. J. Dent. 9:140–144, 1996.PubMedGoogle Scholar
  32. 32.
    Gwinnett, A. J., and S. Yu. Effect of long-term water storage on dentin bonding. Am. J. Dent. 8:109–111, 1995.PubMedGoogle Scholar
  33. 33.
    Hagio, M., M. Kawaguchi, W. Motokawa, and K. Mizayaki. Degradation of methacrylate monomers in human saliva. Dent. Mater. J. 25:241–246, 2006.PubMedCrossRefGoogle Scholar
  34. 34.
    Haj-Ali, R., M. P. Walker, K. Williams, Y. Wang, and P. Spencer. Histomorphologic characterization of non-carious and caries-affected dentin/adhesive interfaces. J. Prosthodontics 15:82–88, 2006.CrossRefGoogle Scholar
  35. 35.
    Hansel, C., G. Leyhausen, U. E. Mai, and W. Geurtsen. Effects of various resin composite (co)monomers and extracts on two caries-associated micro-organisms in vitro. J. Dent. Res. 77:60–67, 1998.PubMedCrossRefGoogle Scholar
  36. 36.
    Harnirattisai, C., S. Inokoshi, H. Hosoda, and Y. Shimade. Interfacial morphology of an adhesive composite resin and etched caries-affected dentin. Oper. Dent. 17:222–228, 1992.PubMedGoogle Scholar
  37. 37.
    Hashimoto, M., H. Ohno, K. Endo, M. Kaga, H. Sano, and H. Oguchi. The effect of hybrid layer thickness on bond strength: demineralized dentin zone of the hybrid layer. Dent. Mater. 16:406–411, 2000.PubMedCrossRefGoogle Scholar
  38. 38.
    Hashimoto, M., H. Ohno, M. Kaga, K. Endo, H. Sano, and H. Oguchi. In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J. Dent. Res. 79:1385–1391, 2000.PubMedCrossRefGoogle Scholar
  39. 39.
    Hashimoto, M., H. Ohno, M. Kaga, K. Endo, H. Sano, and H. Oguchi. Resin-tooth adhesive interfaces after long-term function. Am. J. Dent. 12:211–215, 2001.Google Scholar
  40. 40.
    Hashimoto, M., H. Ohno, H. Sano, M. Kaga, and H. Oguchi. In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials 24:3795–3803, 2003.PubMedCrossRefGoogle Scholar
  41. 41.
    Hashimoto, M., H. Ohno, H. Sano, F. R. Tay, M. Kaga, Y. Kudou, H. Oguchi, Y. Araki, and M. Kubota. Micromorphological changes in resin-dentin bonds after 1 year of water storage. J. Biomed. Mater. Res. Appl. Biomater. 63:306–311, 2002.CrossRefGoogle Scholar
  42. 42.
    Hebling, J., D. H. Pashley, L. Tjaderhane, and F. R. Tay. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J. Dent. Res. 84:741–746, 2005.PubMedCrossRefGoogle Scholar
  43. 43.
    Humphrey, S. P., and R. T. Williamson. A review of saliva: normal composition, flow, and function. J. Prosthet. Dent. 85:162–169, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Hunter, A. R., E. T. Treasue, and A. J. Hunter. Increases in cavity volume associated with the removal of class 2 amalgam and composite restorations. Operat. Dent. 20:2–6, 1995.Google Scholar
  45. 45.
    Ito, S., M. Hashimoto, B. Wadgaonkar, N. Svizero, R. M. Carvalho, C. Yiu, et al. Effect of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 26:6449–6459, 2005.PubMedCrossRefGoogle Scholar
  46. 46.
    Ito, S., T. Saito, F. R. Tay, R. M. Carvalho, M. Yoshiyama, and D. H. Pashley. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J. Biomed. Mater. Res. B Appl. Biomater. 72:109–116, 2005.PubMedCrossRefGoogle Scholar
  47. 47.
    Jaffer, F., Y. Finer, and J. P. Santerre. Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials 23:1707–1719, 2002.PubMedCrossRefGoogle Scholar
  48. 48.
    Kanca, J. Improved bond strength through acid etching of dentin and bonding to wet dentin surfaces. J. Am. Dent. Assoc. 123:235–243, 1992.Google Scholar
  49. 49.
    Katz, J. L., S. Bumrerraj, J. Dreyfuss, Y. Wang, and P. Spencer. Micromechanics of the dentin/adhesive interface. J. Biomed. Mater. Res. (Appl. Biomater.) 58:366–371, 2001.CrossRefGoogle Scholar
  50. 50.
    Katz, J. L., A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S. J. Eppell, and M. Tabib-Azar. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. Mater. Sci. Eng. C 27:450–468, 2007.CrossRefGoogle Scholar
  51. 51.
    Katz, J. L., A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S. J. Eppell, and M. Tabib-Azar. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. J. Mater. Sci. Eng. C 27:450–468, 2007.CrossRefGoogle Scholar
  52. 52.
    Katz, J. L., P. Spencer, T. Nomura, A. Wagh, and Y. Wang. Micromechanical properties of demineralized dentin collagen with and without adhesive infiltration. J. Biomed. Mater. Res. 66A:120–128, 2003.CrossRefGoogle Scholar
  53. 53.
    Kinney, J. H., M. Balooch, S. J. Marshall, and G. W. Marshall. Atomic force microscope study of dimensional changes in dentine during drying. Arch. Oral Biol. 38:1003–1007, 1993.PubMedCrossRefGoogle Scholar
  54. 54.
    Kinney, J. H., J. A. Pople, G. W. Marshall, and S. J. Marshall. Collagen orientation and crystallite size in human dentin: a small angle X-ray scattering study. Calcif. Tissues Int. 69:31–37, 2001.CrossRefGoogle Scholar
  55. 55.
    Kleverlaan, C. J., and A. J. Feilzer. Polymerization shrinkage and contraction stress of dental resin composites. Dent. Mater. 21:1150–1157, 2005.PubMedCrossRefGoogle Scholar
  56. 56.
    Kostoryz, E. L., K. Dharmala, Q. Ye, Y. Wang, J. Huber, J. G. Park, G. Snider, J. L. Katz, and P. Spencer. Enzymatic biodegradation of HEMA/bisGMA adhesives formulated with different water content. J. Biomed. Mater. Res. B 88:394–401, 2009.Google Scholar
  57. 57.
    Kugel, G., and M. Ferrari. The Science of Bonding: from first to sixth generation. JADA 131:20s–25s, 2000.PubMedGoogle Scholar
  58. 58.
    Labow, R. S., D. G. Duguay, and J. P. Santerre. The enzymatic hydrolysis of a synthetic biomembrane: a new substrate for cholesterol and carboxyl esterases. J. Biomater. Sci. Polym. Ed. 6:169–179, 1994.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee, Y. K., and J. M. Powers. Influence of salivary organic substances on the discoloration of esthetic dental materials—a review. J. Biomed. Mater. Res. 76:397–402, 2006.CrossRefGoogle Scholar
  60. 60.
    LeGeros, R. Z. Calcium phosphates in oral biology and medicine. In: Monographs in Oral Science, edited by H. M. Meyers. Basel: Karger, 1991, pp. 121.Google Scholar
  61. 61.
    Leinfelder, K. F. Do restorations made of amalgam outlast those made of resin-based composite? J. Am. Dent. Assoc. 131:1186–1187, 2000.PubMedGoogle Scholar
  62. 62.
    Lemor, R. M., M. B. Kruger, D. M. Wieliczka, J. R. Swafford, and P. Spencer. Spectroscopic and morphologic characterization of the dentin/adhesive interface. J. Biomed. Optics 4:22–27, 1999.CrossRefGoogle Scholar
  63. 63.
    Levin, L., M. Coval, and S. B. Geiger. Cross-sectional radiographic survey of amalgam and resin-based composite posterior restorations. Quint. Int. 38:511–514, 2007.Google Scholar
  64. 64.
    Levine, M. J. Salivary macromolecules. A structure/function synopsis. Ann. N. Y. Acad. Sci. 694:11–16, 1993.PubMedCrossRefGoogle Scholar
  65. 65.
    Malacarne, J., R. M. Carvalho, M. F. de Goes, N. Svizero, D. H. Pashley, F. R. Tay, C. K. Yiu, and M. R. Carrilho. Water sorption/solubility of dental adhesive resins. Dent. Mater. 22:973–980, 2006.PubMedCrossRefGoogle Scholar
  66. 66.
    Marangos, O., A. Misra, P. Spencer, B. Bohaty, and J. L. Katz. Physico-mechanical properties determination using microscale homotopic measurements: application to sound and caries-affected primary tooth dentin. Acta Biomater. 5:1338–1348, 2009.PubMedCrossRefGoogle Scholar
  67. 67.
    Marshall, G. W., N. Inai, I. C. W. Magidi, M. Balooch, J. H. Kinney, J. Tagami, and S. J. Marshall. Dentin demineralization: effects of dentin depth, pH and different acids. Dent. Mater. 13:338–343, 1997.PubMedCrossRefGoogle Scholar
  68. 68.
    Marshall, G. W., S. J. Marshall, J. H. Kinney, and M. Balooch. The dentin substrate: structure and properties related to bonding. J. Dent. 25:441–458, 1997.PubMedCrossRefGoogle Scholar
  69. 69.
    Marshall, J., and G. W. Dentin. Microstructure and characterization. Quint. Int. 24:606–617, 1993.Google Scholar
  70. 70.
    Misra, A., P. Spencer, O. Marangos, Y. Wang, and J. L. Katz. Micromechanical analysis of dentin/adhesive interface using finite element method. J. Biomed. Mater. Res. 70B:56–65, 2004.CrossRefGoogle Scholar
  71. 71.
    Misra, A., P. Spencer, O. Marangos, Y. Wang, and J. L. Katz. Parametric study of the effect of phase anisotropy on the micromechanical behavior of dentin/adhesive interfaces. J. R. Soc. Interface 2:145–157, 2005.PubMedCrossRefGoogle Scholar
  72. 72.
    Mjor, I. A., J. E. Dahl, and J. E. Moorhead. Age of restorations at replacement in permanent teeth in general dental practice. Acta Odontol. Scand. 58:97–101, 2000.PubMedCrossRefGoogle Scholar
  73. 73.
    Munksgaard, E. C., and M. Freund. Enzymatic hydrolysis of (di)methacrylates and their polymers. Scand. J. Dent. Res. 98:261–267, 1990.PubMedGoogle Scholar
  74. 74.
    Murray, P. E., L. J. Windsor, T. W. Smyth, A. A. Hafez, and C. F. Cox. Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit. Rev. Oral Biol. Med. 13:509–520, 2002.PubMedCrossRefGoogle Scholar
  75. 75.
    Nakabayashi, N., K. Kojima, and E. Masuhara. The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Res. 16:265–273, 1982.PubMedCrossRefGoogle Scholar
  76. 76.
    Nakajima, M., H. Sano, M. F. Burrow, J. Tagami, M. Yoshiyama, S. Ebisu, B. Ciucchi, C. M. Russell, and D. H. Pashley. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives. J. Dent. Res. 74:1679–1688, 1995.PubMedCrossRefGoogle Scholar
  77. 77.
    Nishitani, Y., M. Yoshiyama, A. M. Donnelly, K. A. Agee, J. Sword, F. R. Tay, and D. H. Pashley. Effects of resin hydrophilicity on dentin bond strength. J. Dent. Res. 85:1016–1021, 2006.PubMedCrossRefGoogle Scholar
  78. 78.
    Okuda, M., P. N. Pereira, M. Nakajima, J. Tagami, and D. H. Pashley. Long-term durability of resin dentin interface: nanoleakage vs. microtensile bond strength. Oper. Dent. 27:289–296, 2002.PubMedGoogle Scholar
  79. 79.
    Park, J. G., Q. Ye, E. M. Topp, E. L. Kostoryz, Y. Wang, S. L. Kieweg, and P. Spencer. Preparation and properties of novel dentin adhesives with esterase resistance. J. Appl. Polym. Sci. 107:3588–3597, 2008.CrossRefGoogle Scholar
  80. 80.
    Park, J. G., Q. Ye, E. M. Topp, C. H. Lee, E. L. Kostoryz, A. Misra, and P. Spencer. Dynamic mechanical analysis and esterase degradation of dentin adhesives containing a branched methacrylate. J. Biomed. Mater. Res. B 91:61–70, 2009.Google Scholar
  81. 81.
    Park, J. G., Q. Ye, E. M. Topp, and P. Spencer. Enzyme-catalyzed hydrolysis of dentin adhesives containing a new urethane-based trimethacrylate monomer. J. Biomed. Mater. Res. B 91:562–571, 2009.Google Scholar
  82. 82.
    Pashley, D. H. Clinical correlations of dentin structure and function. J. Prosthet. Dent. 66:777–781, 1991.PubMedCrossRefGoogle Scholar
  83. 83.
    Pashley, D. H. Dentin: a dynamic substrate in dentistry. Scanning Microsc. 3:161–176, 1989.PubMedGoogle Scholar
  84. 84.
    Pashley, D. H. Smear layer: overview of structure and function. Proc. Finn. Dent. Soc. 88(Suppl. 1):215–224, 1992.PubMedGoogle Scholar
  85. 85.
    Pashley, D. H., B. Ciucchi, H. Sano, and J. A. Horner. Permeability of dentin to adhesive agents. Quint. Int. 24:618–631, 1993.Google Scholar
  86. 86.
    Pashley, D. H., F. R. Tay, C. Yiu, M. Hashimoto, L. Breschi, R. M. Carvalho, and S. Ito. Collagen degradation by host-derived enzymes during aging. J. Dent. Res. 83:216–221, 2004.PubMedCrossRefGoogle Scholar
  87. 87.
    Pashley, E. L., Y. Zhang, P. E. Lockwood, F. A. Rueggeberg, and D. H. Pashley. Effects of HEMA on water evaporation from water-HEMA mixtures. Dent. Mater. 14:6–10, 1998.PubMedCrossRefGoogle Scholar
  88. 88.
    Paul, S. J., M. Leach, F. A. Rueggeberg, and D. H. Pashley. Effect of water content on the physical properties of model dentine primer and bonding resins. J. Dent. 27:209–214, 1999.PubMedCrossRefGoogle Scholar
  89. 89.
    Perdigao, J., R. Frankenberger, B. T. Rosa, and L. Breschi. New trends in dentin/enamel adhesion. Am. J. Dent. 13:25D–30D, 2000.PubMedGoogle Scholar
  90. 90.
    Perdigao, J., E. J. Swift, G. E. Denehy, J. S. Wefel, and K. J. Donly. In vitro bond strengths and SEM evaluation of dentin bonding systems to different dentin substrates. J. Dent. Res. 73:44–55, 1994.PubMedGoogle Scholar
  91. 91.
    Pereira, P. N. R., M. Okuda, H. Sano, T. Yoshikawa, M. F. Burrow, and J. Tagami. Effect of intrinsic wetness and regional difference on dentin bond strength. Dent. Mater. 15:46–53, 1999.PubMedCrossRefGoogle Scholar
  92. 92.
    Peumans, M., P. Kanumilli, J. De Munck, K. Van Landuyt, P. Lambrechts, and B. Van Meerbeek. Clinical effectiveness of contemporary adhesives: a systematic review of current clinical trials. Dent. Mater. 21:864–881, 2005.PubMedCrossRefGoogle Scholar
  93. 93.
    Purk, J. H., V. Dusevich, A. G. Glaros, P. Spencer, and J. D. Eick. In vivo versus in vitro microtensile bond strength of axial versus gingival cavity preparation walls in Class II resin-based composite restorations. JADA 135:185–193, 2004.PubMedGoogle Scholar
  94. 94.
    Roulet, J. F. Benefits and disadvantages of tooth-coloured alternatives to amalgam. J. Dent. 25:459–473, 1997.PubMedCrossRefGoogle Scholar
  95. 95.
    Roulet, J. F., and M. Degrange, editors. Adhesion: The Silent Revolution in Dentistry. Quintessence Publishing Co., Inc., p. 263, 1999.Google Scholar
  96. 96.
    Sano, H. Microtensile testing, nanoleakage, and biodegradation of resin-dentin bonds. J. Dent. Res. 85:11–14, 2006.PubMedCrossRefGoogle Scholar
  97. 97.
    Sano, H., T. Yoshikawa, P. N. R. Pereira, N. Kanemura, M. Morigami, J. Tagami, and D. H. Pashley. Long-term durability of dentin bonds made with a self-etching primer, in vivo. J. Dent. Res. 78:906–911, 1999.PubMedCrossRefGoogle Scholar
  98. 98.
    Santerre, J. P., L. Shajii, and B. W. Leung. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit. Rev. Oral Biol. Med. 12:136–151, 2001.PubMedCrossRefGoogle Scholar
  99. 99.
    Simecek, J. W., K. E. Diefenderfer, and M. E. Cohen. An evaluation of replacement rates for posterior resin-based composite and amalgam restorations in US Navy and Marine Corps recruits. J. Am. Dent. Assoc. 140:200–209, 2009.PubMedGoogle Scholar
  100. 100.
    Singh, V. Viscoelastic and fatigue properties of dental adhesives and their impact on dentin-adhesive interface durability. M.S. Thesis. In: Mechanical Engineering. Lawrence: University of Kansas, 2009.Google Scholar
  101. 101.
    Soappman, M. J., A. Nazari, J. A. Porter, and D. Arola. A comparison of fatigue crack growth in resin composite, dentin and the interface. Dent. Mater. 23:608–614, 2007.PubMedCrossRefGoogle Scholar
  102. 102.
    Soncini, J. A., N. N. Maserejian, F. Trachtenberg, M. Tavares, and C. Hayes. The longevity of amalgam versus compomer/composite restorations in posterior primary and permanent teeth: findings From the New England Children’s Amalgam Trial. J. Am. Dent. Assoc. 138:763–772, 2007.PubMedGoogle Scholar
  103. 103.
    Spencer, P., J. L. Katz, M. Tabib-Azar, Y. Wang, A. Wagh, and T. Nomura. Hyperspectral analysis of collagen infused with BisGMA-based polymeric adhesive. In: Tissue Engineering and Novel Delivery Systems, edited by M. J. Yaszemski, D. J. Trantolo, K. U. Lewandrowski, V. Hasirci, D. E. Altobelli, and D. L. Wise. New York: Marcel Decker, 2003, pp. 599–632.Google Scholar
  104. 104.
    Spencer, P., and J. R. Swafford. Unprotected protein at the dentin-adhesive interface. Quint. Int. 30:501–507, 1999.Google Scholar
  105. 105.
    Spencer, P., and Y. Wang. Adhesive phase separation at the dentin interface under wet bonding conditions. J. Biomed. Mater. Res. 62:447–456, 2002.PubMedCrossRefGoogle Scholar
  106. 106.
    Spencer, P., Y. Wang, and B. Bohaty. Interfacial chemistry of moisture-aged class II composite restorations. J. Biomed. Mater. Res. B 77:234–240, 2006.Google Scholar
  107. 107.
    Spencer, P., Y. Wang, and J. L. Katz. Identification of collagen encapsulation at the dentin/adhesive interface. J. Adhesive Dent. 6:91–95, 2004.Google Scholar
  108. 108.
    Spencer, P., Y. Wang, J. L. Katz, and A. Misra. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J. Biomed. Optics 10:031104, 2005.CrossRefGoogle Scholar
  109. 109.
    Spencer, P., Y. Wang, M. P. Walker, and J. R. Swafford. Molecular structure of acid-etched dentin smear layers-in situ study. J. Dent. Res. 80:1802–1807, 2001.CrossRefGoogle Scholar
  110. 110.
    Spencer, P., Y. Wang, M. P. Walker, D. M. Wieliczka, and J. R. Swafford. Interfacial chemistry of the dentin/adhesive bond. J. Dent. Res. 79:1458–1463, 2000.PubMedCrossRefGoogle Scholar
  111. 111.
    Staninec, M., P. Kim, G. W. Marshall, R. O. Ritchie, and S. J. Marshall. Fatigue of dentin-composite interfaces with four-point bend. Dent. Mater. 24:799–803, 2008.PubMedCrossRefGoogle Scholar
  112. 112.
    Tam, L. E., and R. M. Pilliar. Fracture surface characterization of dentin-bonded interfacial fracture toughness specimens. J. Dent. Res. 73:607–619, 1994.PubMedGoogle Scholar
  113. 113.
    Tay, F. R., A. J. Gwinnett, K. M. Pang, and S. H. Y. Wei. An optical, micromorphological study of surface moisture in the total etched resin-dentin interface. Am. J. Dent. 9:43–48, 1996.PubMedGoogle Scholar
  114. 114.
    Tay, F. R., A. J. Gwinnett, and S. H. Y. Wei. Micromophological sepctrum from overdrying to overwetting acid-conditioned dentin in water-free, acetone-based, single-bottle primer/adhesives. Dent. Mater. 12:236–244, 1996.PubMedCrossRefGoogle Scholar
  115. 115.
    Tay, F. R., A. J. Gwinnett, and S. H. Y. Wei. The overwet phenomenon: a transmission electron microscopic study of surface moisture in the acid-conditioned, resin-dentin interface. Am. J. Dent. 9:161–166, 1996.PubMedGoogle Scholar
  116. 116.
    Tay, F. R., M. Hashimoto, D. H. Pashley, M. C. Peters, S. C. Lai, C. K. Yiu, and C. Cheong. Aging affects two modes of nanoleakage expression in bonded dentin. J. Dent. Res. 82:537–541, 2003.PubMedCrossRefGoogle Scholar
  117. 117.
    Tay, F. R., and D. H. Pashley. Aggressiveness of contemporary self-etching systems. I: depth of penetratio beyond dentin smear layers. Dent. Mater. 17:296–308, 2001.PubMedCrossRefGoogle Scholar
  118. 118.
    Tay, F. R., and D. H. Pashley. Have dentin adhesives become too hydrophilic? J. Can. Dent. Assoc. 69:726–731, 2003.PubMedGoogle Scholar
  119. 119.
    Tay, F. R., and D. H. Pashley. Water treeing—a potential mechanism for degradation of dentin adhesives. Am. J. Dent. 16:6–12, 2003.PubMedGoogle Scholar
  120. 120.
    Ten Cate, A. R. Oral Histology. St. Louis: Mosby, p. 174, 1994.Google Scholar
  121. 121.
    Ten Cate, A. R. Repair and regeneration of dental tissue. In: Oral Histology Development, Structure, and Function, edited by A. R. Ten Cate. St. Louis: Mosby, 1994, pp. 456–468.Google Scholar
  122. 122.
    Thiagarajan, G., K. Deshmukh, Y. Wang, A. Misra, J. L. Katz, and P. Spencer. Nano finite element modeling of the mechanical behavior of biocomposites using multi-scale (virtual internal bond) material models. J. Biomed. Mater. Res. A 83:332–344, 2007.PubMedGoogle Scholar
  123. 123.
    Thomas, J. G., and L. A. Nakaishi. Managing the complexity of a dynamic biofilm. J. Am. Dent. Assoc. 137:10S–15S, 2006.PubMedGoogle Scholar
  124. 124.
    Tobi, H., C. M. Kreulen, H. Vondeling, and W. E. van Amerongen. Cost-effectiveness of composite resins and amalgam in the replacement of amalgam class II restorations. Commun. Dent. Oral Epidemiol. 27:137–143, 1999.CrossRefGoogle Scholar
  125. 125.
    Van Landuyt, K. L., J. Snauwaert, J. De Munck, M. Peumans, Y. Yoshida, A. Poitevin, E. Coutinho, K. Suzuki, P. Lambrechts, and B. Van Meerbeek. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28:3757–3785, 2007.PubMedCrossRefGoogle Scholar
  126. 126.
    Van Meerbeek, B., K. Van Landuyt, J. De Munck, M. Hashimoto, M. Peumans, P. Lambrechts, Y. Yoshida, S. Inoue, and K. Suzuki. Technique-sensitivity of contemporary adhesives. Dent. Mater. J. 24:1–13, 2005.PubMedGoogle Scholar
  127. 127.
    Van Nieuwenhuysen, J. P., W. D’Hoore, J. Carvalho, and V. Qvist. Long-term evaluation of extensive restorations in permanent teeth. J. Dent. 31:395–405, 2003.PubMedCrossRefGoogle Scholar
  128. 128.
    Wadgaonkar, B., S. Ito, N. Svizero, D. Elrod, S. Foulger, R. Rodgers, Y. Oshida, K. Kirkland, J. Sword, F. Rueggeberg, F. Tay, and D. Pashley. Evaluation of the effect of water-uptake on the impedance of dental resins. Biomaterials 27:3287–3294, 2006.PubMedCrossRefGoogle Scholar
  129. 129.
    Wang, R., and S. Weiner. Human root dentin: structure anistropy and vickers microhardness isotropy. Connect. Tissue Res. 39:269–279, 1998.PubMedCrossRefGoogle Scholar
  130. 130.
    Wang, Y., and P. Spencer. Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy. J. Biomed. Mater. Res. 60:300–308, 2002.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang, Y., and P. Spencer. Continuing etching of an all-in-one adhesive in wet dentin tubules. J. Dent. Res. 84:350–354, 2005.PubMedCrossRefGoogle Scholar
  132. 132.
    Wang, Y., and P. Spencer. Effect of acid etching time and techniques on interfacial characteristics of the adhesive-dentin bond using differential staining. Eur. J. Oral Sci. 112:293–299, 2004.PubMedCrossRefGoogle Scholar
  133. 133.
    Wang, Y., and P. Spencer. Evaluation of the interface between one-bottle adhesive systems and dentin by Goldner’s trichrome stain. Am. J. Dent. 18:66–72, 2005.PubMedGoogle Scholar
  134. 134.
    Wang, Y., and P. Spencer. Hybridization efficiency of the adhesive dentin interface with wet bonding. J. Dent. Res. 82:141–145, 2003.PubMedCrossRefGoogle Scholar
  135. 135.
    Wang, Y., and P. Spencer. Interfacial chemistry of Class II composite restoration: structure analysis. J. Biomed. Mater. Res. 75A:580–587, 2005.CrossRefGoogle Scholar
  136. 136.
    Wang, Y., and P. Spencer. Overestimating hybrid layer quality in polished adhesive/dentin interfaces. J. Biomed. Mater. Res. 68A:735–746, 2004.CrossRefGoogle Scholar
  137. 137.
    Wang, Y., and P. Spencer. Physicochemical interactions at the interfaces between self-etch adhesive systems and dentin. J. Dent. 32:567–579, 2004.PubMedCrossRefGoogle Scholar
  138. 138.
    Wang, Y., and P. Spencer. Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. J. Biomed. Mater. Res. 59:46–55, 2002.PubMedCrossRefGoogle Scholar
  139. 139.
    Wang, Y., P. Spencer, C. Hager, and B. Bohaty. Comparison of interfacial characteristics of adhesive bonding to superficial versus deep dentin using SEM and staining techniques. J. Dent. 34:26–34, 2006.PubMedCrossRefGoogle Scholar
  140. 140.
    Wang, Y., P. Spencer, and X. Yao. Micro-Raman imaging analysis of monomer/mineral distribution in intertubular region of adhesive/dentin interfaces. J. Biomed. Optics. 11:024005-024001–024005-024007, 2006.Google Scholar
  141. 141.
    Wang, Y., P. Spencer, X. Yao, and B. Brenda. Effect of solvent content on resin hybridization in wet dentin bonding. J. Biomed. Mater. Res. A 82:975–983, 2007.PubMedGoogle Scholar
  142. 142.
    Wang, Y., P. Spencer, X. Yao, and Q. Ye. Effect of co-initiator and water on the photoreactivity and photopolymerization of HEMA/camphoroquinone-based reactant mixtures. J. Biomed. Mater. Res. 78A:721–728, 2006.CrossRefGoogle Scholar
  143. 143.
    Weiner, S., A. Veis, E. Beniash, T. Arad, J. W. Dillon, B. Sabsay, and F. Siddiqui. Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J. Struct. Biol. 126:27–41, 1999.PubMedCrossRefGoogle Scholar
  144. 144.
    Wieliczka, D. M., M. B. Kruger, and P. Spencer. Raman imaging of dental adhesive diffusion. Appl. Spectrosc. 51:1593–1596, 1997.CrossRefGoogle Scholar
  145. 145.
    Ye, Q., J. Park, E. Topp, and P. Spencer. Effect of photoinitiators on the in vitro performance of a dentin adhesive exposed to simulated oral environment. Dent. Mater. 25:452–458, 2009.PubMedCrossRefGoogle Scholar
  146. 146.
    Ye, Q., J. G. Park, E. Topp, Y. Wang, A. Misra, and P. Spencer. In vitro performance of nano-heterogeneous dentin adhesive. J. Dent. Res. 87:829–833, 2008.PubMedCrossRefGoogle Scholar
  147. 147.
    Ye, Q., P. Spencer, and Y. Wang. Nanoscale patterning in crosslinked methacrylate copolymer networks: an atomic force microscopy study. J. Appl. Polym. Sci. 106:3843–3851, 2007.CrossRefGoogle Scholar
  148. 148.
    Ye, Q., P. Spencer, Y. Wang, and A. Misra. Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. J. Biomed. Mater. Res. A 80:342–350, 2007.PubMedGoogle Scholar
  149. 149.
    Ye, Q., Y. Wang, and P. Spencer. Nanophase separation of polymers exposed to simulated bonding conditions. J. Biomed. Mater. Res. B 88:339–348, 2009.Google Scholar
  150. 150.
    Yiu, C. K., N. M. King, D. H. Pashley, B. I. Suh, R. M. Carvalho, M. R. Carrilho, and F. R. Tay. Effect of resin hydrophilicity and water storage on resin strength. Biomaterials 25:5789–5796, 2004.PubMedCrossRefGoogle Scholar
  151. 151.
    Yoshida, E., S. Uno, Y. Nodasaka, M. Kaga, and S. Hirano. Relationship between water status in dentin and interfacial morphology in all-in-one adhesives. Dent. Mater. 23:556–560, 2007.PubMedCrossRefGoogle Scholar
  152. 152.
    Yoshiyama, M., R. Carvalho, H. Sano, J. Horner, P. D. Brewer, and D. H. Pashley. Interfacial morphology and strength of bonds made to superficial versus deep dentin. Am. J. Dent. 8:297–302, 1995.PubMedGoogle Scholar
  153. 153.
    Yoshiyama, M., R. M. Carvalho, H. Sano, J. A. Horner, P. D. Brewer, and D. H. Pashley. Regional bond strengths of resins to human root dentine. J. Dent. 24:435–442, 1996.PubMedCrossRefGoogle Scholar
  154. 154.
    Yoshiyama, M., A. Urayama, T. Kimochi, T. Matsuo, and D. H. Pashley. Comparison of conventional vs. self-etching adhesive bonds to caries-affected dentin. Oper. Dent. 25:163–169, 2000.PubMedGoogle Scholar
  155. 155.
    Yourtee, D. M., R. E. Smith, K. A. Russo, S. Burmaster, J. M. Cannon, J. D. Eick, and E. L. Kostoryz. The stability of methacrylate biomaterials when enzyme challenged: Kinetic and systematic evaluations. J. Biomed. Mater. Res. 57:523–531, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Paulette Spencer
    • 1
    • 2
    Email author
  • Qiang Ye
    • 2
  • Jonggu Park
    • 2
  • Elizabeth M. Topp
    • 3
  • Anil Misra
    • 2
    • 4
  • Orestes Marangos
    • 4
  • Yong Wang
    • 5
  • Brenda S. Bohaty
    • 6
  • Viraj Singh
    • 1
  • Fabio Sene
    • 7
  • John Eslick
    • 2
  • Kyle Camarda
    • 8
  • J. Lawrence Katz
    • 2
    • 9
  1. 1.Department of Mechanical EngineeringUniversity of KansasLawrenceUSA
  2. 2.Bioengineering Research CenterUniversity of KansasLawrenceUSA
  3. 3.Department of Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA
  4. 4.Department of Civil EngineeringUniversity of KansasLawrenceUSA
  5. 5.Department of Oral BiologyUniversity of Missouri-Kansas City School of DentistryKansas CityUSA
  6. 6.Department of Pediatric DentistryUniversity of Missouri-Kansas City School of DentistryKansas CityUSA
  7. 7.Department of Restorative DentistryState University of Londrina, School of DentistryLondrinaBrazil
  8. 8.Department of Chemical EngineeringUniversity of KansasLawrenceUSA
  9. 9.School of EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations