Annals of Biomedical Engineering

, Volume 38, Issue 4, pp 1539–1547 | Cite as

Single Camera Photogrammetry System for EEG Electrode Identification and Localization

Article

Abstract

In this study, photogrammetric coordinate measurement and color-based identification of EEG electrode positions on the human head are simultaneously implemented. A rotating, 2MP digital camera about 20 cm above the subject’s head is used and the images are acquired at predefined stop points separated azimuthally at equal angular displacements. In order to realize full automation, the electrodes have been labeled by colored circular markers and an electrode recognition algorithm has been developed. The proposed method has been tested by using a plastic head phantom carrying 25 electrode markers. Electrode locations have been determined while incorporating three different methods: (i) the proposed photogrammetric method, (ii) conventional 3D radiofrequency (RF) digitizer, and (iii) coordinate measurement machine having about 6.5 μm accuracy. It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm. It is suggested that this method may be used in EEG source localization applications in the human brain.

Keywords

Electrode localization Source localization Brain CMM RF digitizer 

References

  1. 1.
    Abdel-Aziz, Y. I., and H. M. Karara. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proceedings of the Symposium on Close-Range Photogrammetry Falls Church, VA. American Society of Photogrammetry, 1971, pp. 1–18.Google Scholar
  2. 2.
    Akhtari, M., H. C. Bryant, A. N. Mamelak, L. Heller, J. J. Shih, M. Mandelkern, A. Matlachov, D. M. Ranken, E. D. Best, and W. W. Sutherling. Conductivities of three layer live human skull. Brain Topogr. 14:151–167, 2002.CrossRefPubMedGoogle Scholar
  3. 3.
    Atkinson, K. B. Close Range Photogrammetry and Machine Vision. Scotland: Whittles Publishing, 1996.Google Scholar
  4. 4.
    Baillet, S., J. C. Mosher, and R. M. Leahy. Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6):14–30, 2001.CrossRefGoogle Scholar
  5. 5.
    Bauer, H., C. Lamm, S. Holzreiter, I. Hollander, U. Leodolter, and M. Leodolter. Measurement of 3D electrode coordinates by means of a 3D photogrammetric head digitizer. NeuroImage 11:461, 2000.CrossRefGoogle Scholar
  6. 6.
    Baysal, U., and J. Haueisen. Use of a priori information in estimating tissue resistivities—application to human data in vivo. Physiol. Meas. 25:737–748, 2004.CrossRefPubMedGoogle Scholar
  7. 7.
    Bhanu, B., and J. Peng. Adaptive integrated image segmentation and object recognition. IEEE Trans. Syst. Man Cyber. C 30:427–441, 2000.CrossRefGoogle Scholar
  8. 8.
    Binnie, C. D., E. Dekker, A. Smit, and G. van der Linken. Practical considerations in the positioning of EEG electrodes. Electroencephalogr. Clin. Neurophysiol. 53(4):453–458, 1982.CrossRefPubMedGoogle Scholar
  9. 9.
    Bourbakis, N., P. Yuan, and S. Makrogiannis. Object recognition using wavelets. L-G graphs and synthesis of regions. Pattern Recogn. 40:2077–2096, 2007.CrossRefGoogle Scholar
  10. 10.
    Brinkmann, B., T. O’Brien, A. Dresner, T. Lagerlund, W. Sharbrough, and A. Robb. Scalp-recorded EEG localization in MRI volume data. Brain Topogr. 10:245–253, 1998.CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng, H. D., X. H. Jiang, Y. Sun, and J. Wang. Colour image segmentation: advances and prospects. Pattern Recogn. 34:2259–2281, 2001.CrossRefGoogle Scholar
  12. 12.
    Colombo, C., and A. Del Bimbo. Colour-induced image representation and retrieval. Pattern Recogn. 32:1685–1695, 1999.CrossRefGoogle Scholar
  13. 13.
    Cooper, M. A. R., and S. Robson. Theory of close range photogrammetry. In: Close Range Photogrammetry and Machine Vision, edited by K. B. Atkinson. Whittles Publishing, 1996, pp. 9–51.Google Scholar
  14. 14.
    De Munck, J. C., P. C. M. Vijn, and H. Spekreijse. A practical method for determining electrode positions on the head. Electroencephalogr. Clin. Neurophysiol. 78(1):85–87, 1991.CrossRefPubMedGoogle Scholar
  15. 15.
    Du, X., X. Jin, X. Zhang, J. Shen, and X. Hou. Geometry features measurement of traffic accident for reconstruction based on close range photogrammetry. Adv. Eng. Softw. 40(7):497–505, 2009.CrossRefGoogle Scholar
  16. 16.
    Faes, T. J. C., H. A. van der Meij, J. C. de Munck, and R. M. Heethar. The electric resistivity of human tissues (100 Hz–10 MHz): a meta-analysis of review studies. Physiol. Meas. 20:R1–R10, 1999.CrossRefPubMedGoogle Scholar
  17. 17.
    Ferree, T. C., K. J. Ericksen, and D. M. Tucker. Regional head tissue conductivity estimation for improved EEG analysis. IEEE Trans. Biomed. Eng. 47:1584–1592, 2000.CrossRefPubMedGoogle Scholar
  18. 18.
    Goncalves, S., J. C. de Munck, J. P. A. Verbunt, F. Bijma, R. M. Heethar, and F. Lopes da Silva. In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models of the head. IEEE Trans. Biomed. Eng. 50:754–767, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Gussekloo, S. W. B., B. A. M. Jansenn, V. G. Vosselmann, and R. G. Bout. A single camera roentgen stereophotogrammetry method for static displacement analysis. J. Biomech. 33:759–763, 2000.CrossRefPubMedGoogle Scholar
  20. 20.
    Haemmerich, D., S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster. In vivo electrical conductivity of hepatic tumors. Physiol. Meas. 24:251–260, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    Hatze, H. High Precision three dimensional photogrammetric calibration and object space reconstruction using a modified DLT approach. J. Biomech. 21(7):533–538, 1988.CrossRefPubMedGoogle Scholar
  22. 22.
    Haueisen, J., C. Ramon, M. Eiselt, H. Nowak, and H. Brauer. Influence of tissue resistivities on neuromagnetic fields and potentials studied with a finite element model of the head. IEEE Trans. Biomed. Eng. 44:727–735, 1997.CrossRefPubMedGoogle Scholar
  23. 23.
    Heimonen, T., J. H. Hannuksela, J. Leinonen, and M. Manninen. Experiments in 3D measurements by using single camera and accurate motion. In: Proceedings of the 4th IEEE International Symposium on Assembly and Task Planning Soft Research Park, Fukuoka, Japan, May 28–29, 2001.Google Scholar
  24. 24.
    Homma, S., T. Musha, Y. Nakajima, Y. Okamoto, S. Blom, R. Flink, and K. E. Hagbarth. Conductivity ratios of the scalp–skull–brain model in estimating equivalent dipole sources in human brain. Neurosci. Res. 22:51–55, 1995.CrossRefPubMedGoogle Scholar
  25. 25.
    Huppertz, H., M. Otte, C. Grimm, R. Kriesteva-Feige, T. Mergner, and C. Lcking. Estimation of the accuracy of a surface matching technique for registration of EEG and MRI data. Electroencephalogr. Clin. Neurophysiol. 106:409–415, 1998.CrossRefPubMedGoogle Scholar
  26. 26.
    Jain, A., and A. Vailaya. Image retrieval using colour and shape. Pattern Recogn. 29:1233–1244, 1996.CrossRefGoogle Scholar
  27. 27.
    Jiang, R., D. V. Jauregui, and K. R. White. Close-range photogrammetry applications in bridge measurement: literature review. Measurement 41:823–834, 2008.CrossRefGoogle Scholar
  28. 28.
    Khosla, D., M. Don, and B. Kwong. Spatial mislocalization of EEG electrodes—effects on accuracy of dipole estimation. Clin. Neurophysiol. 110(2):261–271, 1999.CrossRefPubMedGoogle Scholar
  29. 29.
    Koessler, L., A. Benhadid, L. Maillard, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun. Automatic localization and labeling of EEG sensors (ALLES) in MRI volume. Neuroimage 41(3):914–923, 2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Koessler, L., L. Maillard, A. Benhadid, J. P. Vignal, M. Braun, and H. Vespignani. Spatial localization of EEG electrodes. Clin. Neurophysiol. 37:97–102, 2007.CrossRefGoogle Scholar
  31. 31.
    Kraus, K. Photogrammetry, Vol. 1, Fundamentals and Standard Processes. Bonn: Dümmler, 1993.Google Scholar
  32. 32.
    Latikka, J., T. Kuurne, and H. Eskola. Conductivity of living intracranial tissues. Phys. Med. Biol. 46:1611–1616, 2001.CrossRefPubMedGoogle Scholar
  33. 33.
    Le, J., M. Lu, E. Pellouchoud, and A. Gevins. A rapid method for determining standard 10/10 electrode positions for high resolution EEG studies. Electroencephalogr. Clin. Neurophysiol. 106:554–588, 1998.CrossRefPubMedGoogle Scholar
  34. 34.
    Mojsilovic, A., J. Kovacevic, D. Kall, R. Safranek, and K. Ganapathy. The vocabulary and grammar of colour patterns. IEEE Trans. Image Process. 9:417–431, 2000.CrossRefPubMedGoogle Scholar
  35. 35.
    Mosher, J. C., R. M. Lewis, and R. M. Leahy. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39:541–557, 1992.CrossRefPubMedGoogle Scholar
  36. 36.
    Oostendorp, T. F., J. Delbeke, and D. F. Stegeman. The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans. Biomed. Eng. 47:1487–1492, 2000.CrossRefPubMedGoogle Scholar
  37. 37.
    Quiñones-Rozo, C. A., Y. M. A. Hashash, and L. Y. Liu. Digital image reasoning for tracking excavation activities. Automat. Constr. 17(5):608–622, 2008.Google Scholar
  38. 38.
    Russell, G. S., K. J. Eriksen, P. Poolman, P. Luu, and D. M. Tucker. Geodesic photogrammetry for localizing sensor positions in dense-array. EEG Clin Neurophysiol 116:1130–1140, 2005.Google Scholar
  39. 39.
    Sanz, P. J., M. Marin, and J. S. Sanches. Including effective object recognition capabilities in online robots: from a statistical to a neural-network classifier. IEEE Trans. Pattern Anal. Machine Intel. 35:87–96, 2005.Google Scholar
  40. 40.
    Sijberg, J., B. Vanrumste, G. Van Hoey, P. Boon, M. Verhoye, and A. Van der Linden. Automatic localization of EEG electrode markers within 3D MR data. Magn. Reson. Imaging 18:485–488, 2000.CrossRefGoogle Scholar
  41. 41.
    Van Hoey, G., B. Vamrumste, M. D’Have, R. Van de Walle, I. Lemahieu, and P. Boon. Influence of measurement noise and electrode mislocalization on EEG dipole-source localisation. Med. Biol. Eng. Comput. 38:287–296, 2000.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang, Y., and J. Gotman. The influence of electrode location errors on EEG dipole source localization with a realistic head model. Clin. Neurophysiol. 112(9):1777–1780, 2001.CrossRefPubMedGoogle Scholar
  43. 43.
    Wolf, P. R. Elements of Photogrammetry (2nd ed.). USA: McGraw-Hill Publishing, 1991.Google Scholar
  44. 44.
    Yoo, S. S., C. Guttmann, J. Ives, L. Panych, R. Kikinis, and D. Schomer. 3D localization of surface 10–20 electrodes on high resolution anatomical MR images. Electroencephalogr. Clin. Neurophysiol. 102:335–339, 1997.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang, D., and G. Lu. Review of shape representation and description techniques. Pattern Recogn. 37:1–19, 2004.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Electrical and Electronics Engineering DepartmentHacettepe UniversityAnkaraTurkey

Personalised recommendations