Annals of Biomedical Engineering

, Volume 38, Issue 3, pp 1148–1161 | Cite as

From Cellular Mechanotransduction to Biologically Inspired Engineering

2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009


This article is based on a lecture I presented as the recipient of the 2009 Pritzker Distinguished Lecturer Award at the Biomedical Engineering Society annual meeting in October 2009. Here, I review more than thirty years of research from my laboratory, beginning with studies designed to test the theory that cells use tensegrity (tensional integrity) architecture to stabilize their shape and sense mechanical signals, which I believed to be critical for control of cell function and tissue development. Although I was trained as a cell biologist, I found that the tools I had at my disposal were insufficient to experimentally test these theories, and thus I ventured into engineering to find critical solutions. This path has been extremely fruitful as it has led to confirmation of the critical role that physical forces play in developmental control, as well as how cells sense and respond to mechanical signals at the molecular level through a process known as cellular mechanotransduction. Many of the predictions of the cellular tensegrity model relating to cell mechanical behaviors have been shown to be valid, and this vision of cell structure led to discovery of the central role that transmembrane adhesion receptors, such as integrins, and the cytoskeleton play in mechanosensing and mechanochemical conversion. In addition, these fundamental studies have led to significant unexpected technology fallout, including development of micromagnetic actuators for non-invasive control of cellular signaling, microfluidic systems as therapeutic extracorporeal devices for sepsis therapy, and new DNA-based nanobiotechnology approaches that permit construction of artificial tensegrities that mimic properties of living materials for applications in tissue engineering and regenerative medicine.


Mechanotransduction Tensegrity Cell mechanics Prestress Cytoskeleton Integrin Biomimetic 



The research described in this lecture was supported by grants from NIH, NASA, NSF, DARPA, DoD, CIMIT, ARO, and Wyss Institute, and the author is a recipient of a DoD Breast Cancer Innovator Award.


  1. 1.
    Alenghat, F. J., J. Tytell, C. K. Thodeti, A. Derrien, and D. E. Ingber. Mechanical control of cAMP signaling through integrins is mediated by the heterotrimeric Gαs protein. J. Cell. Biochem. 106:529–538, 2009.CrossRefPubMedGoogle Scholar
  2. 2.
    Bojanowski, K., A. Maniotis, S. Plisov, A. K. Larsen, and D. E. Ingber. DNA Topoisomerase II can drive changes in higher order chromosome architecture without enzymatically modifying DNA. J. Cell. Biochem. 69:127–142, 1998.CrossRefPubMedGoogle Scholar
  3. 3.
    Brangwynne, C., F. C. Macintosh, S. Kumar, N. A. Geisse, L. Mahadevan, K. K. Parker, D. E. Ingber, and D. Weitz. Microtubules can bear enhanced compressive loads in living cells due to lateral reinforcement. J. Cell Biol. 173:1175–1183, 2006.CrossRefGoogle Scholar
  4. 4.
    Chen, C. S., M. Mrksich, S. Huang, G. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.CrossRefPubMedGoogle Scholar
  5. 5.
    Chicurel, M. E., R. H. Singer, C. Meyer, and D. E. Ingber. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392:730–733, 1998.CrossRefPubMedGoogle Scholar
  6. 6.
    Dietz, H., S. M. Douglas, and W. M. Shih. Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Dike, L., C. S. Chen, M. Mrkisch, J. Tien, G. M. Whitesides, and D. E. Ingber. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev. Biol. 35:441–448, 1999.CrossRefGoogle Scholar
  8. 8.
    Douglas, S. M., H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418, 2009.CrossRefPubMedGoogle Scholar
  9. 9.
    Eckes, B., D. Dogic, E. Colucci-Guyon, N. Wang, A. Maniotis, D. E. Ingber, A. Merckling, M. Aumailley, V. Koteliansky, C. Babinet, and T. Krieg. Impaired mechanical stability, migration, and contractile capacity in vimentin-deficient fibroblasts. J. Cell Sci. 111:1897–1907, 1998.PubMedGoogle Scholar
  10. 10.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefPubMedGoogle Scholar
  11. 11.
    Folkman, J., and A. Moscona. Role of cell shape in growth control. Nature 273:345–349, 1978.CrossRefPubMedGoogle Scholar
  12. 12.
    Fuller, B. Tensegrity. Portfolio Artnews Annu. 4:112–127, 1961.Google Scholar
  13. 13.
    Huang, S., and D. E. Ingber. The structural and mechanical complexity of cell growth control. Nat. Cell Biol. 1:E131–E138, 1999.CrossRefPubMedGoogle Scholar
  14. 14.
    Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl Acad. Sci. USA 87:3579–3583, 1990.CrossRefPubMedGoogle Scholar
  15. 15.
    Ingber, D. E. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3:841–848, 1991.CrossRefPubMedGoogle Scholar
  16. 16.
    Ingber, D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104:613–627, 1993.PubMedGoogle Scholar
  17. 17.
    Ingber, D. E. The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell 75:1249–1252, 1993.CrossRefPubMedGoogle Scholar
  18. 18.
    Ingber, D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59:575–599, 1997.CrossRefPubMedGoogle Scholar
  19. 19.
    Ingber, D. E. The architecture of life. Sci. Am. 278:48–57, 1998.CrossRefPubMedGoogle Scholar
  20. 20.
    Ingber, D. E. The origin of cellular life. Bioessays 22:1160–1170, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Ingber, D. E. Cellular tensegrity revisited I. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–1173, 2003.CrossRefPubMedGoogle Scholar
  22. 22.
    Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20:811–827, 2006.CrossRefPubMedGoogle Scholar
  23. 23.
    Ingber, D. E., and J. Folkman. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330, 1989.CrossRefPubMedGoogle Scholar
  24. 24.
    Ingber, D. E., and J. D. Jamieson. Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces tranduced over basement membrane. In: Gene Expression During Normal and Malignant Differentiation, edited by L. C. Andersson, C. G. Gahmberg, and P. Ekblom. Orlando: Academic Press, 1985, pp. 13–32.Google Scholar
  25. 25.
    Ingber, D. E., J. A. Madri, and J. D. Jamieson. Role of basal lamina in the neoplastic disorganization of tissue architecture. Proc. Natl Acad. Sci. USA 78:3901–3905, 1981.CrossRefPubMedGoogle Scholar
  26. 26.
    Kumar, S., I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. Lele, M. Salanga, E. Mazur, and D. E. Ingber. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization and extracellular matrix mechanics. Biophys. J. 90:1–12, 2006.CrossRefGoogle Scholar
  27. 27.
    Lazarides, E. Actin, α-actinin, and tropomyosin interactions in the structural organization of actin filaments in nonmuscle cells. J. Cell Biol. 68:202–219, 1976.CrossRefPubMedGoogle Scholar
  28. 28.
    Lele, T. P., J. Pendse, S. Kumar, M. Salanga, J. Karavitis, and D. E. Ingber. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J. Cell. Physiol. 207:187–194, 2006.CrossRefPubMedGoogle Scholar
  29. 29.
    Liedl, T., B. Högberg, J. Tytell, D. E. Ingber, and W. M. Shih. Self-assembly of 3D prestressed tensegrity structures from DNA. Nature Nanotech. (in press).Google Scholar
  30. 30.
    Luo, Y., X. Xu, T. Lele, S. Kumar, and D. E. Ingber. A multimodular tensegrity model of an actin stress fiber. J. Biomech. 41:2379–2387, 2008.CrossRefPubMedGoogle Scholar
  31. 31.
    Mammoto, A., K. Connor, T. Mammoto, C. Aderman, G. Mostoslavsky, L. E. H. Smith, and D. E. Ingber. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457:1103–1108, 2009.CrossRefPubMedGoogle Scholar
  32. 32.
    Mammoto, A., S. Huang, K. Moore, P. Oh, and D. E. Ingber. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J. Biol. Chem. 279:26323–26330, 2004.CrossRefPubMedGoogle Scholar
  33. 33.
    Maniotis, A., K. Bojanowski, and D. E. Ingber. Mechanical continuity and reversible chromosome disassembly within intact genomes microsurgically removed from living cells. J. Cell. Biochem. 65:114–130, 1997.CrossRefPubMedGoogle Scholar
  34. 34.
    Maniotis, A., C. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94:849–854, 1997.CrossRefPubMedGoogle Scholar
  35. 35.
    Mannix, R. J., S. Kumar, F. Cassiola, M. Montoya-Zavala, and D. E. Ingber. Magnetic actuation of receptor-mediated signal transduction. Nat. Nanotech. 3:36–40, 2008.CrossRefGoogle Scholar
  36. 36.
    Matthews, B. D., D. R. Overby, F. J. Alenghat, J. Karavitis, Y. Numaguchi, P. G. Allen, and D. E. Ingber. Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem. Biophys. Res. Commun. 313:758–764, 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    Matthews, B. D., D. R. Overby, R. Mannix, and D. E. Ingber. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119:508–518, 2006.CrossRefPubMedGoogle Scholar
  38. 38.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.CrossRefPubMedGoogle Scholar
  39. 39.
    Meyer, C. J., F. J. Alenghat, P. Rim, J. H.-J. Fong, B. Fabry, and D. E. Ingber. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat. Cell Biol. 2:666–668, 2000.CrossRefPubMedGoogle Scholar
  40. 40.
    Moore, K. A., T. Polte, S. Huang, B. Shi, E. Alsberg, M. E. Sunday, and D. E. Ingber. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev. Dyn. 232:268–281, 2005.CrossRefPubMedGoogle Scholar
  41. 41.
    Na, S., O. Collin, F. Chowdhury, B. Tay, M. Ouyang, Y. Wang, and N. Wang. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105:6626–6631, 2008.CrossRefPubMedGoogle Scholar
  42. 42.
    Oslakovic, K., R. Matsuura, J. Kumailil, E. Roberts, D. Vaughn, D. Clifford, R. Ezzell, and D. E. Ingber. Cell-based biomimetic materials. In: Proceedings of the International Conference on Intelligent Materials, edited by P. F. Gobin and J. Tatibouet. Japan: Technomics, 1999.Google Scholar
  43. 43.
    Parker, K. K., A. L. Brock, C. Brangwynne, R. J. Mannix, N. Wang, E. Ostuni, N. Geisse, J. C. Adams, G. M. Whitesides, and D. E. Ingber. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16:1195–1204, 2002.CrossRefPubMedGoogle Scholar
  44. 44.
    Pickett-Heaps, J. D., A. Forer, and T. Spurck. Traction fibre: toward a “tensegral” model of the spindle. Cell Motil. Cytoskel. 37:1–6, 1997.CrossRefGoogle Scholar
  45. 45.
    Riveline, D., E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, and A. D. Bershadsky. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–1186, 2001.CrossRefPubMedGoogle Scholar
  46. 46.
    Sawada, Y., M. Tamada, B. J. Dubin-Thaler, O. Cherniavskaya, R. Sakai, S. Tanaka, and M. P. Sheetz. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026, 2006.CrossRefPubMedGoogle Scholar
  47. 47.
    Saxena, V., C.-W. Hwang, S. Huang, Q. Eichbaum, D. E. Ingber, and D. Orgill. Vacuum assisted closure: micro-deformations of wounds and cell proliferation. Plast. Reconstr. Surg. 114:1086–1096, 2004.CrossRefPubMedGoogle Scholar
  48. 48.
    Schwartz, M. A., C. Lechene, and D. E. Ingber. Insoluble fibronectin activates the Na+/H+ antiporter by clustering and immobilizing integrin α5β1, independent of cell shape. Proc. Natl Acad. Sci. USA 88:7849–7853, 1991.CrossRefPubMedGoogle Scholar
  49. 49.
    Singhvi, R., A. Kumar, G. Lopez, G. N. Stephanopoulos, D. I. C. Wang, G. M. Whitesides, and D. E. Ingber. Engineering cell shape and function. Science 264:696–698, 1994.CrossRefPubMedGoogle Scholar
  50. 50.
    Stamenovic, D., J. Fredberg, N. Wang, J. Butler, and D. E. Ingber. A microstructural approach to cytoskeletal mechanics based on tensegrity. J. Theor. Biol. 181:125–136, 1996.CrossRefPubMedGoogle Scholar
  51. 51.
    Stamenovic, D., and D. E. Ingber. Tensegrity-guided self assembly: from molecules to living cells. Soft Matter 5:1137–1145, 2009.CrossRefGoogle Scholar
  52. 52.
    Tagawa, H., N. Wang, T. Narishige, D. E. Ingber, M. R. Zile, and G. Cooper IV. Cytoskeletal mechanics pressure overload cardiac hypertrophy. Circ. Res. 80:281–289, 1997.PubMedGoogle Scholar
  53. 53.
    Vera, C., R. Skelton, F. Bossens, and L. A. Sung. 3-D nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations. Ann. Biomed. Eng. 33:1387–1404, 2005.CrossRefPubMedGoogle Scholar
  54. 54.
    Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang, N., K. Naruse, D. Stamenovic, J. Fredberg, S. M. Mijailovic, G. Maksym, T. Polte, and D. E. Ingber. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. USA 98:7765–7770, 2001.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang, N., J. Tytell, and D. E. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82, 2009.CrossRefPubMedGoogle Scholar
  57. 57.
    Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber. Soft lithography in biology and biochemistry. Ann. Rev. Biomed. Eng. 3:335–373, 2001.CrossRefGoogle Scholar
  58. 58.
  59. 59.
    Xia, N., T. P. Hunt, B. T. Mayers, E. Alsberg, G. M. Whitesides, R. M. Westervelt, and D. E. Ingber. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Devices Biomed. Microdevices 8:299–308, 2006.CrossRefGoogle Scholar
  60. 60.
    Xia, N., C. K. Thodeti, T. P. Hunt, Q. Xu, M. Ho, G. M. Whitesides, R. Westervelt, and D. E. Ingber. Directional control of cell motility through focal adhesion positioning and local Rac activation. FASEB J. 22:1649–1659, 2008.CrossRefPubMedGoogle Scholar
  61. 61.
    Yung, C., and D. E. Ingber. Micromagnetic—microfluidic blood cleansing device. Lab Chip 9:1171–1177, 2009.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhong, C., M. Chrzanowska-Wodnicka, J. Brown, A. Shaub, A. M. Belkin, and K. Burridge. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141:539–551, 1998.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA
  2. 2.Vascular Biology Program, KFRL 11.127, Departments of Pathology and SurgeryChildren’s HospitalBostonUSA
  3. 3.Department of PathologyHarvard Medical SchoolBostonUSA
  4. 4.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations