Finite Element Investigation of Stentless Pericardial Aortic Valves: Relevance of Leaflet Geometry


Recent developments in aortic valve replacement include the truly stentless pericardial bioprostheses with single point attached commissures (SPAC) implantation technique. The leaflet geometry available for the SPAC valves can either be a simple tubular or a complex three-dimensional structure molded using specially designed molds. Our main objective was to compare these two leaflet designs, the tubular vs. the molded, by dynamic finite element simulation. Time-varying physiological pressure loadings over a full cardiac cycle were simulated using ABAQUS. Dynamic leaflet behavior, leaflet coaptation parameters, and stress distribution were compared. The maximum effective valve orifice area during systole is 633.5 mm2 in the molded valve vs. 400.6 mm2 in the tubular valve, and the leaflet coaptation height during diastole is 4.5 mm in the former, in contrast to 1.6 mm in the latter. Computed compressive stress indicates high magnitudes at the commissures and inter-leaflet margins of the tubular valve, the highest being 3.83 MPa, more than twice greater than 1.80 MPa in the molded valve. The molded leaflet design which resembles the native valve exerts a positive influence on the mechanical performance of the SPAC pericardial valves compared with the simple tubular design. This may suggest enhanced valve efficacy and durability.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.



  1. 1.

    Akar, A. R., A. Szafranek, C. Alexious, R. Janas, M. J. Jasinski, J. Swanevelder, and A. W. Sosnowski. Use of stentless xenografts in the aortic position: determinants of early and late outcome. Ann. Thorac. Surg. 74:1450–1457, 2002.

  2. 2.

    Arcidiacono, G., A. Corvi, and T. Severi. Functional analysis of bioprosthetic heart valves. J. Biomech. 38:1483–1490, 2005.

  3. 3.

    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part I. Experimental results. ASME J. Biomech. Eng. 122:23–30, 2000.

  4. 4.

    Brewer, R. J., J. D. Deck, B. Capati, and S. P. Nolan. The dynamic aortic root—its role in aortic valve function. J. Thorac. Cardiovasc. Surg. 72:413–417, 1976.

  5. 5.

    Cacciola, G., G. W. M. Peters, and P. J. G. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33:521–530, 2000.

  6. 6.

    Carmody, C. J., G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39:158–169, 2006.

  7. 7.

    Courtney, T., M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27(19):3631–3638, 2006.

  8. 8.

    Cox, J. L., N. Ad, K. Myers, M. Gharib, and R. C. Quijano. Tubular heart valves: a new tissue prosthesis design—preclinical evaluation of the 3F aortic bioprosthesis. J. Thorac. Cardiovasc. Surg. 130(2):520–527, 2005.

  9. 9.

    Dasi, L. P., H. A. Simon, P. Sucosky, and A. P. Yoganathan. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36(2):225–237, 2009.

  10. 10.

    De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.

  11. 11.

    Deiwick, M., B. Glasmacher, H. A. Baba, N. Roeder, H. Reul, G. von Bally, and H. H. Scheld. In vitro testing of bioprostheses: influence of mechanical stresses and lipids on calcification. Ann. Thorac. Surg. 66(6 Suppl):S206–S211, 1998.

  12. 12.

    Doss, M., S. Martens, J. P. Wood, A. Miskovic, T. Christodoulou, G. Wimmer-Greinecker, and A. Moritz. Aortic leaflet replacement with the new 3F stentless aortic bioprosthesis. Ann. Thorac. Surg. 79(2):682–685, 2005.

  13. 13.

    Gnyaneshwar, R., R. K. Kumar, and K. R. Balakrishnan. Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73:1122–1129, 2002.

  14. 14.

    Goetz, W. A., K. H. Lim, R. Ibled, N. Grousson, S. Salgues, and J. H. Yeo. Forces at single point attached commissures (SPAC) in pericardial aortic valve prosthesis. Eur. J. Cardiothorac. Surg. 29:150–155, 2006.

  15. 15.

    Goetz, W. A., T. E. Tan, K. H. Lim, S. Salgues, N. Grousson, F. Xiong, Y. L. Chua, and J. H. Yeo. Truly stentless molded autologous pericardial aortic valve prosthesis with single point attached commissures in a sheep model. Eur. J. Cardiothorac. Surg. 33:548–553, 2008.

  16. 16.

    Grubitzsch, H., J. Linneweber, C. Kossagk, E. Sanli, S. Beholz, and W. Konertz. Aortic valve replacement with new-generation stentless pericardial valves: short-term clinical and hemodynamic results. J. Heart Valve Dis. 14(5):623–629, 2005.

  17. 17.

    Haj-Ali, R., L. P. Dasi, H. Kim, J. Choi, H. W. Leo, and A. P. Yoganathan. Structural simulations of prosthetic tri-leaflet aortic heart valves. J. Biomech. 41:1510–1519, 2008.

  18. 18.

    Hanlon, J. G., R. W. Suggit, and J. W. Love. Preuse intraoperative testing of autologous tissue for valvular surgery: a proof of concept study. J. Heart Valve Dis. 8:614–624, 1999.

  19. 19.

    Kim, H., K. B. Chandran, M. S. Sacks, and J. Lu. An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann. Biomed. Eng. 35(1):30–44, 2007.

  20. 20.

    Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2):262–275, 2008.

  21. 21.

    Lee, J. M., S. A. Haberer, and D. R. Boughner. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium. J. Biomed. Mater. Res. 23:457–475, 1989.

  22. 22.

    Li, J., X. Y. Luo, and Z. B. Kuang. A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34:1279–1289, 2001.

  23. 23.

    Lim, K. H., J. Candra, J. H. Yeo, and C. M. Duran. Flat or curved pericardial aortic valve cusps: a finite element study. J. Heart Valve Dis. 13(5):792–797, 2004.

  24. 24.

    Mirnajafi, A., J. Raymer, M. J. Scott, and M. S. Sacks. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 26:795–804, 2005.

  25. 25.

    Mueller, X., and L. K. von Segesser. A new equine pericardial stentless valve. J. Thorac. Cardiovasc. Surg. 125(6):1405–1411, 2003.

  26. 26.

    O’Brien valve, M. F. The Cryolife-O’Brien composite aortic stentless xenograft: surgical technique of implantation. Ann. Thorac. Surg. 60(2 Suppl):S410–S413, 1995.

  27. 27.

    Patterson, E. A., I. C. Howard, and M. A. Thornton. A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J. Med. Eng. Technol. 20:95–108, 1996.

  28. 28.

    Rao, V., G. T. Christakis, J. Sever, S. E. Fremes, G. Bhatnagar, G. Cohen, M. A. Borger, L. Abouzahr, B. S. Goldman, and C. F. Sintek. A novel comparison of stentless versus stented valves in the small aortic root. J. Thorac. Cardiovasc. Surg. 117:431–438, 1999.

  29. 29.

    Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. H. Daebritz, D. P. Martin, F. J. Schoen, J. P. Vacanti, and J. E. Mayer. Tissue engineering of heart valves: in vitro experiences. Ann. Thorac. Surg. 70:140–144, 2000.

  30. 30.

    Sripathi, V. C., R. K. Kumar, and K. R. Balakrishnan. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann. Thorac. Surg. 77:844–851, 2004.

  31. 31.

    Thubrikar, M. J. The Aortic Valve. Boca Raton, FL: CRC Press, 1990.

  32. 32.

    Thubrikar, M. J., J. D. Deck, J. Aouad, and S. P. Nolan. Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg. 86(1):115–125, 1983.

  33. 33.

    Yoganathan, A. P., and B. R. Travis. Fluid dynamics of prosthetic valves. In: The Practice of Clinical Echocardiography, edited by C. M. Otto. Philedelphia, PA: WB Saunders, 2000.

  34. 34.

    Zioupos, P., J. C. Barbenel, and J. Fisher. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves. J. Biomed. Mater. Res. 28:49–57, 1994.

Download references


The authors gratefully acknowledge the support of a grant from the Academic Research Fund (AcRF) Tier 2 Project by the Ministry of Education Singapore for this study (T207B3203).

Author information

Correspondence to Joon Hock Yeo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Dynamic behavior of the SPAC molded valve: in vitro results (WMV 2051 kb)

Dynamic behavior of the SPAC tubular valve: in vitro results (WMV 3630 kb)

Video 1

Dynamic behavior of the SPAC molded valve: finite element results (MOV 4444 kb)

Video 2

Dynamic behavior of the SPAC tubular valve: finite element results (MOV 4417 kb)

Video 3

Dynamic behavior of the SPAC molded valve: in vitro results (WMV 2051 kb)

Video 4

Dynamic behavior of the SPAC tubular valve: in vitro results (WMV 3630 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiong, F.L., Goetz, W.A., Chong, C.K. et al. Finite Element Investigation of Stentless Pericardial Aortic Valves: Relevance of Leaflet Geometry. Ann Biomed Eng 38, 1908–1918 (2010).

Download citation


  • Single point attached commissures
  • Valve molds
  • Dynamic leaflet behavior
  • Effective valve orifice area
  • Coaptation height
  • Coaptation area
  • Compressive stress