Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 4, pp 1451–1462 | Cite as

Concentration and Time Effects of Dextran Exposure on Endothelial Cell Viability, Attachment, and Inflammatory Marker Expression In Vitro

  • Leonie Rouleau
  • Joanna Rossi
  • Richard L. LeaskEmail author
Article

Abstract

Dextran is commonly used to alter growth medium rheological properties for in vitro flow experiments in order to match physiological parameters. Despite its acceptance in literature, few studies have examined dextran effects on cells. In this study, we investigated changes in endothelial cell function due to dextran, under static and flow conditions, in a concentration and time-dependent manner. Dextran increased endothelial cell viability, decreased their ability to attach to culture plates and decreased leukocyte adhesion to endothelial cells. Under static conditions, dextran increased protein and mRNA expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in a concentration and time-dependent manner and caused the nuclear translocation of NF-κB. Steady laminar wall shear stress modulated the effects of dextran on ICAM-1, VCAM-1, and NF-κB expression in straight/tubular in vitro models. When the expression was normalized to their respective time matched static dextran control, it did not affect the ability to detect changes caused by shear on the mRNA expression of ICAM-1 and VCAM-1. This study demonstrates that dextran can alter endothelial cell function and therefore, caution is advised and time matched dextran controls are necessary when using dextran for dynamic cell studies.

Keywords

Endothelial cell In vitro Perfusion Inflammation Wall shear Hemodynamic forces Dextran 

Notes

Acknowledgments

We thank A. McGlynn, J. Caporuscio, J. van der Vooren, C. Piche, and S. Meadley for their help in the determination of the medium properties. Technical assistance from L. Villeneuve in confocal imaging was also greatly appreciated.

References

  1. 1.
    Akashi, N., J.-I. Kushibiki, and F. Dunn. Measurements of acoustic properties of aqueous dextran solutions in the VHF/UHF range. Ultrasonics 38:915–919, 2000.CrossRefPubMedGoogle Scholar
  2. 2.
    Ando, J., H. Tsuboi, R. Korenaga, Y. Takada, N. Toyama-Sorimachi, M. Miyasaka, and A. Kamiya. Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression. Am. J. Physiol. Cell. Physiol. 267(3):C679–C687, 1994.Google Scholar
  3. 3.
    Bergqvist, D. Modern aspects of prophylaxis and therapy for venous thrombo-embolic disease. Aust. N. Z. J. Surg. 68(7):463–468, 1998.CrossRefPubMedGoogle Scholar
  4. 4.
    Blackman, B. R., K. A. Barbee, and L. E. Thibault. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann. Biomed. Eng. 28(4):363–372, 2000.CrossRefPubMedGoogle Scholar
  5. 5.
    Blackman, B. R., G. Garcia-Cardena, and M. A. Gimbrone, Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng. 124(4):397–407, 2002.CrossRefPubMedGoogle Scholar
  6. 6.
    Boyum, A., D. Lovhaug, L. Tresland, and E. M. Nordlie. Separation of leucocytes: improved cell purity by fine adjustments of gradient medium density and osmolality. Scand. J. Immunol. 34(6):697–712, 1991.CrossRefPubMedGoogle Scholar
  7. 7.
    Boyum, A., H. Stormorken, and A. Lund-Riise. Electronic platelet counting. Scand. J. Clin. Lab. Invest. 28(4):429–433, 1971.CrossRefPubMedGoogle Scholar
  8. 8.
    Carrasco, F., E. Chornet, R. P. Overend, and J. Costa. Generalized correlation for the viscosity of dextrans in aqueous solutions as a function of temperature, concentration, and molecular weight at low shear rates. J. Appl. Polym. Sci. Symp. 37(8):2087–2098, 1989.CrossRefGoogle Scholar
  9. 9.
    Clagett, G. P., F. A. Anderson, Jr., W. Geerts, J. A. Heit, M. Knudson, J. R. Lieberman, G. J. Merli, and H. B. Wheeler. Prevention of venous thromboembolism. Chest 114(5 Suppl):531S–560S, 1998.CrossRefPubMedGoogle Scholar
  10. 10.
    Cybulsky, M. I., and M. A. Gimbrone, Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251(4995):788–791, 1991.CrossRefPubMedGoogle Scholar
  11. 11.
    Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. USA 101(41):14871–14876, 2004.CrossRefPubMedGoogle Scholar
  12. 12.
    Dancu, M. B., D. E. Berardi, J. P. Vanden Heuvel, and J. M. Tarbell. Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and cyclooxygenase-2 but induces endothelin-1 gene expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24(11):2088–2094, 2004.CrossRefPubMedGoogle Scholar
  13. 13.
    Dancu, M. B., D. E. Berardi, J. Vanden Heuvel, and J. M. Tarbell. Atherogenic endothelial cell eNOS and ET-1 responses to asynchronous hemodynamics are mitigated by conjugated linoleic acid. Ann. Biomed. Eng. 35(7):1111–1119, 2007.CrossRefPubMedGoogle Scholar
  14. 14.
    Davies, P. F., C. F. Dewey, Jr., S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone, Jr. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Invest. 73(4):1121–1129, 1984.CrossRefPubMedGoogle Scholar
  15. 15.
    de Jonge, E., and M. Levi. Effects of different plasma substitutes on blood coagulation: a comparative review. Crit. Care Med. 29(6):1261–1267, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Depaola, N., P. F. Davies, W. F. Pritchard, Jr., L. Florez, N. Harbeck, and D. C. Polacek. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl Acad. Sci. USA 96(6):3154–3159, 1999.CrossRefPubMedGoogle Scholar
  17. 17.
    Depaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12(11):1254–1257, 1992.PubMedGoogle Scholar
  18. 18.
    Dewey, Jr., C. F., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103(3):177–185, 1981.CrossRefPubMedGoogle Scholar
  19. 19.
    Farcas, M., L. Rouleau, R. Fraser, and R. Leask. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease. Biomed. Eng. Online 8(1):30, 2009.CrossRefPubMedGoogle Scholar
  20. 20.
    Freshney, R. I. Culture of animal cells: a manual of basic technique. Hoboken, NJ: Wiley-Liss, 2005.CrossRefGoogle Scholar
  21. 21.
    Gabbiani, G., F. Gabbiani, D. Lombardi, and S. M. Schwartz. Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc. Natl Acad. Sci. USA 80(8):2361–2364, 1983.CrossRefPubMedGoogle Scholar
  22. 22.
    Garcia-Cardena, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone, Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl Acad. Sci. USA 98(8):4478–4485, 2001.CrossRefPubMedGoogle Scholar
  23. 23.
    Gelin, L., and B. Ingeman. Rheomacrodex—a new dextran solution for rheological treatment of impaired capillary flow. Acta Chir. Scand. 122:294–302, 1961.PubMedGoogle Scholar
  24. 24.
    Gimbrone, Jr., M. A., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N. Y. Acad. Sci. 902:230–239, 2000.PubMedCrossRefGoogle Scholar
  25. 25.
    Hajra, L., A. I. Evans, M. Chen, S. J. Hyduk, T. Collins, and M. I. Cybulsky. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl Acad. Sci. USA 97(16):9052–9057, 2000.CrossRefPubMedGoogle Scholar
  26. 26.
    Harris, R., and E. O. Ukaejiofo. Tissue typing using a routine one-step lymphocyte separation procedure. Br. J. Haematol. 18(2):229–235, 1970.CrossRefPubMedGoogle Scholar
  27. 27.
    Iiyama, K., L. Hajra, M. Iiyama, H. Li, M. DiChiara, B. D. Medoff, and M. I. Cybulsky. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ. Res. 85(2):199–207, 1999.PubMedGoogle Scholar
  28. 28.
    Korenaga, R., J. Ando, K. Kosaki, M. Isshiki, Y. Takada, and A. Kamiya. Negative transcriptional regulation of the VCAM-1 gene by fluid shear stress in murine endothelial cells. Am. J. Physiol. Cell. Physiol. 273(5):C1506–C1515, 1997.Google Scholar
  29. 29.
    Ljungstrom, K. G. Dextran prophylaxis of fatal pulmonary embolism. World J. Surg. 7(6):767–772, 1983.CrossRefPubMedGoogle Scholar
  30. 30.
    Malek, A., and S. Izumo. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am. J. Physiol. 263(2 Pt 1):C389–C396, 1992.PubMedGoogle Scholar
  31. 31.
    Malek, A. M., R. Ahlquist, G. H. Gibbons, V. J. Dzau, and S. Izumo. A cone-plate apparatus for the in vitro biochemical and molecular analysis of the effect of shear stress on adherent cells. Methods Cell Sci. 17(3):165–176, 1995.CrossRefGoogle Scholar
  32. 32.
    Morawietz, H., R. Talanow, M. Szibor, U. Rueckschloss, A. Schubert, B. Bartling, D. Darmer, and J. Holtz. Regulation of the endothelin system by shear stress in human endothelial cells. J. Physiol. 525(3):761–770, 2000.CrossRefPubMedGoogle Scholar
  33. 33.
    Morigi, M., C. Zoja, M. Figliuzzi, M. Foppolo, G. Micheletti, M. Bontempelli, M. Saronni, G. Remuzzi, and A. Remuzzi. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood 85(7):1696–1703, 1995.PubMedGoogle Scholar
  34. 34.
    Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2):55–63, 1983.CrossRefPubMedGoogle Scholar
  35. 35.
    Nagel, T., N. Resnick, W. J. Atkinson, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 2:885–891, 1994.CrossRefGoogle Scholar
  36. 36.
    Nagel, T., N. Resnick, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19(8):1825–1834, 1999.PubMedGoogle Scholar
  37. 37.
    Qiu, Y., and J. M. Tarbell. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. J. Vasc. Res. 37(3):147–157, 2000.CrossRefPubMedGoogle Scholar
  38. 38.
    Rabinowitz, Y. Separation of lymphocytes, polymorphonuclear leukocytes and monocytes on glass columns, including tissue culture observations. Blood 23(6):811–828, 1964.PubMedGoogle Scholar
  39. 39.
    Rinker, K. D., V. Prabhakar, and G. A. Truskey. Effect of contact time and force on monocyte adhesion to vascular endothelium. Biophys. J. 80:1722–1732, 2001.CrossRefPubMedGoogle Scholar
  40. 40.
    Rossi, J., L. Rouleau, J. C. Tardif, and R. L. Leask. Simvastatin increases endothelial nitric oxide synthase expression in cultured endothelial cells preconditioned with steady laminar flow. FASEB J. 23(1):311, 2009.Google Scholar
  41. 41.
    Rouleau, L., M. Farcas, I. Copland, J. C. Tardif, R. Mongrain, and R. L. Leask. Morphological and functional flow-induced response of endothelial cells and adhesive properties of leukocytes in 3D stenotic models. IFMBE Proc. 22(15):2015–2018, 2009.CrossRefGoogle Scholar
  42. 42.
    Rouleau, L., M. Farcas, J. C. Tardif, E. Thorin, R. Mongrain, and R. L. Leask. Endothelial cell morphology and response to shear stress in an asymmetric stenosis model. J. Biomech. 39(S1):S312, 2006.Google Scholar
  43. 43.
    Sabatie, J., L. Choplin, J. L. Doublier, J. Arul, F. Paul, and P. Monsan. Rheology of native dextrans in relation to their primary structure. Carbohydr. Polym. 9(4):287–299, 1988.CrossRefGoogle Scholar
  44. 44.
    Schubert, A., M. Cattaruzza, M. Hecker, D. Darmer, J. Holtz, and H. Morawietz. Shear stress-dependent regulation of the human beta-tubulin folding cofactor D gene. Circ. Res. 87(12):1188–1194, 2000.PubMedGoogle Scholar
  45. 45.
    Sen, A., M. S. Kallos, and L. A. Behie. Expansion of mammalian neural stem cells in bioreactors: effect of power input and medium viscosity. Brain Res. Dev. Brain Res. 134(1–2):103–113, 2002.CrossRefPubMedGoogle Scholar
  46. 46.
    Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, Jr., and C. F. Dewey, Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17(11):3102–3106, 1997.PubMedGoogle Scholar
  47. 47.
    Termeer, C. C., J. M. Weiss, E. Schopf, W. Vanscheidt, and J. C. Simon. The low molecular weight Dextran 40 inhibits the adhesion of T lymphocytes to endothelial cells. Clin. Exp. Immunol. 114(3):422–426, 1998.CrossRefPubMedGoogle Scholar
  48. 48.
    Tirtaatmadja, V., D. E. Dunstan, and D. V. Boger. Rheology of dextran solutions. J. Nonnewton. Fluid Mech. 97(2–3):295–301, 2001.CrossRefGoogle Scholar
  49. 49.
    Tsuboi, H., J. Ando, R. Korenaga, Y. Takada, and A. Kamiya. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem. Biophys. Res. Commun. 206(3):988–996, 1995.CrossRefPubMedGoogle Scholar
  50. 50.
    van den Broek, C. N., R. A. Pullens, O. Frobert, M. C. Rutten, W. F. den Hartog, and F. N. van de Vosse. Medium with blood-analog mechanical properties for cardiovascular tissue culturing. Biorheology 45(6):651–661, 2008.PubMedGoogle Scholar
  51. 51.
    Wade, C. E., J. J. Grady, and G. C. Kramer. Efficacy of hypertonic saline dextran fluid resuscitation for patients with hypotension from penetrating trauma. J. Trauma 54(5 Suppl):S144–S148, 2003.PubMedGoogle Scholar
  52. 52.
    Wechezak, A. R., D. E. Coan, R. F. Viggers, and L. R. Sauvage. Dextran increases survival of subconfluent endothelial cells exposed to shear stress. Am. J. Physiol. Heart Circ. Physiol. 264(2):H520–H525, 1993.Google Scholar
  53. 53.
    Zeerleder, S., T. Mauron, B. LΣmmle, and W. A. Wuillemin. Effect of low-molecular weight dextran sulfate on coagulation and platelet function tests. Thromb. Res. 105(5):441–446, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Leonie Rouleau
    • 1
    • 2
  • Joanna Rossi
    • 1
    • 2
  • Richard L. Leask
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Montreal Heart InstituteMontrealCanada

Personalised recommendations