Annals of Biomedical Engineering

, Volume 38, Issue 3, pp 824–840 | Cite as

Geometric Variability of the Abdominal Aorta and Its Major Peripheral Branches

  • Padraig M. O’Flynn
  • Gerard O’Sullivan
  • Abhay S. Pandit
Article

Abstract

Vessel geometry determines blood flow dynamics and plays a crucial role in the pathogenesis of vascular disease. In vivo assessment of three-dimensional (3D) vessel anatomy is vital to improve the realism of arterial flow model geometries and investigate factors associated with the localisation of atherosclerosis. The quantification of vascular geometry is also particularly important for the proper design and preclinical testing of endovascular devices used to treat peripheral arterial disease. The purpose of this study was to quantitatively evaluate the intersubject variability of 3D branching and curvature of the abdominal aorta and its major peripheral arteries. Contrast-enhanced renal MRA scans of healthy abdominal vessels obtained in 12 subjects (8 men, 4 women mean age 49 years, range 27–84 years) were segmented, and smoothed centerlines were determined as descriptors of arterial geometry. Robust techniques were employed to characterise non-planar vessel curvature, arterial taper, and 3D branching parameters. Noticeable 3D curvature and tapering were quantified for the proximal anterior visceral and renal branches. Mean 3D branching angles of 63.5 ± 10.1° and 73.1 ± 6.8° were established for the right and left renal arteries, respectively. Angles describing the ostial position and initial trajectory of the renal arteries confirmed the antero-lateral origin and direction of the right and the more lateral orientation of the left. The anterior visceral branches emerged predominantly from the left side of the anterior aortic wall. Branching parameters determined at the aortic bifurcation demonstrated mild asymmetry and non-planarity at this location. In summary, the results from this study address the scarcity of available in vivo 3D quantitative geometric data relating to the abdominal vasculature and reflect the geometric variability in living subjects.

Keywords

Peripheral arterial disease Aortoiliac vessels Anterior visceral branches Renal arteries Bifurcation geometry Non-planar arterial curvature 

Notes

Acknowledgments

The authors would like to acknowledge Ms. Geraldine Dowd, Clinical Specialist Radiographer, University College Hospital, Galway for her help, and James Coburn for his technical expertise. This study was supported with funds from Irish Research Council for Science, Engineering, and Technology (IRCSET): funded by the National Development Plan.

References

  1. 1.
    Ajmani, M. L., and K. Ajmani. To study the intrarenal vascular segments of human kidney by corrosion cast technique. Anat. Anz. 154:293–303, 1983.PubMedGoogle Scholar
  2. 2.
    Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23:704–713, 2004.CrossRefPubMedGoogle Scholar
  3. 3.
    Aubert, J., and K. Koumare. Variations of origin of the renal artery: a review covering 403 aortographies. Eur. Urol. 1:182–188, 1975.PubMedGoogle Scholar
  4. 4.
    Aytac, S. K., H. Yigit, T. Sancak, and H. Ozcan. Correlation between the diameter of the main renal artery and the presence of an accessory renal artery: sonographic and angiographic evaluation. J. Ultrasound Med. 22:433–439, 2003.PubMedGoogle Scholar
  5. 5.
    Baden, J. G., D. J. Racy, and T. M. Grist. Contrast-enhanced three-dimensional magnetic resonance angiography of the mesenteric vasculature. J. Magn. Reson. Imaging 10:369–375, 1999.CrossRefPubMedGoogle Scholar
  6. 6.
    Bargeron, C. B., G. M. Hutchins, G. W. Moore, O. J. Deters, F. F. Mark, and M. H. Friedman. Distribution of the geometric parameters of human aortic bifurcations. Arteriosclerosis 6:109–113, 1986.PubMedGoogle Scholar
  7. 7.
    Baumgartner, I., K. von Aesch, D. D. Do, J. Triller, M. Birrer, and F. Mahler. Stent placement in ostial and nonostial atherosclerotic renal arterial stenoses: a prospective follow-up study. Radiology 216:498–505, 2000.PubMedGoogle Scholar
  8. 8.
    Bekkers, E. J., and C. A. Taylor. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Trans. Med. Imaging 27:331–341, 2008.CrossRefPubMedGoogle Scholar
  9. 9.
    Beregi, J. P., B. Mauroy, S. Willoteaux, C. Mounier-Vehier, M. Remy-Jardin, and J. Francke. Anatomic variation in the origin of the main renal arteries: spiral CTA evaluation. Eur. Radiol. 9:1330–1334, 1999.CrossRefPubMedGoogle Scholar
  10. 10.
    Caro, C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R. Soc. Lond. 452:185–197, 1996.CrossRefGoogle Scholar
  11. 11.
    Cebral, J. R., and R. Lohner. From medical images to anatomically accurate finite element grids. Int. J. Numer. Methods Eng. 51:985–1008, 2001.CrossRefGoogle Scholar
  12. 12.
    Choi, G., C. P. Cheng, N. M. Wilson, and C. A. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37:14–33, 2009.CrossRefPubMedGoogle Scholar
  13. 13.
    Choi, G., L. K. Shin, C. A. Taylor, and C. P. Cheng. In vivo deformation of the human abdominal aorta and common iliac arteries with hip and knee flexion: implications for the design of stent-grafts. J. Endovasc. Ther. 16:531–538, 2009.CrossRefPubMedGoogle Scholar
  14. 14.
    Cornhill, J. F., E. E. Herderick, and H. C. Stary. Topography of human aortic sudanophilic lesions. Monogr. Atheroscler. 15:13–19, 1990.PubMedGoogle Scholar
  15. 15.
    DeBakey, M. E., G. M. Lawrie, and D. H. Glaeser. Patterns of atherosclerosis and their surgical significance. Ann. Surg. 201:115–131, 1985.CrossRefPubMedGoogle Scholar
  16. 16.
    Draney, M. T., C. K. Zarins, and C. A. Taylor. Three-dimensional analysis of renal artery bending motion during respiration. J. Endovasc. Ther. 12:380–386, 2005.CrossRefPubMedGoogle Scholar
  17. 17.
    Fanucci, E., A. Orlacchio, and M. Pocek. The vascular geometry of human arterial bifurcations. Invest. Radiol. 23:713–718, 1988.CrossRefPubMedGoogle Scholar
  18. 18.
    Fleischmann, D., T. J. Hastie, F. C. Dannegger, D. S. Paik, M. Tillich, C. K. Zarins, and G. D. Rubin. Quantitative determination of age-related geometric changes in the normal abdominal aorta. J. Vasc. Surg. 33:97–105, 2001.CrossRefPubMedGoogle Scholar
  19. 19.
    Friedman, M. H., O. J. Deters, F. F. Mark, C. B. Bargeron, and G. M. Hutchins. Arterial geometry affects hemodynamics. A potential risk factor for athersoclerosis. Atherosclerosis 46:225–231, 1983.CrossRefPubMedGoogle Scholar
  20. 20.
    Garcier, J. M., B. De Fraissinette, M. Filaire, P. Gayard, T. Therre, A. Ravel, and L. Boyer. Origin and initial course of the renal arteries: a radiological study. Surg. Radiol. Anat. 23:51–55, 2001.CrossRefPubMedGoogle Scholar
  21. 21.
    Geboes, K., K. P. Geboes, and G. Maleux. Vascular anatomy of the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 15:1–14, 2001.CrossRefPubMedGoogle Scholar
  22. 22.
    Glagov, S., D. A. Rowley, and R. I. Kohut. Atherosclerosis of human aorta and its coronary and renal arteries. A consideration of some hemodynamic factors which may be related to the marked differences in atherosclerotic involvement of the coronary and renal arteries. Arch. Pathol. 72:558–571, 1961.PubMedGoogle Scholar
  23. 23.
    Hirsch, A. T., Z. J. Haskal, N. R. Hertzer, C. W. Bakal, M. A. Creager, J. L. Halperin, L. F. Hiratzka, W. R. Murphy, J. W. Olin, J. B. Puschett, K. A. Rosenfield, D. Sacks, J. C. Stanley, L. M. Taylor, Jr., C. J. White, J. White, R. A. White, E. M. Antman, S. C. Smith, Jr., C. D. Adams, J. L. Anderson, D. P. Faxon, V. Fuster, R. J. Gibbons, S. A. Hunt, A. K. Jacobs, R. Nishimura, J. P. Ornato, R. L. Page, and B. Riegel. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 113:e463–e654, 2006.Google Scholar
  24. 24.
    Horejs, D., P. M. Gilbert, S. Burstein, and R. L. Vogelzang. Normal aortoiliac diameters by CT. J. Comput. Assist. Tomogr. 12:602–603, 1988.CrossRefPubMedGoogle Scholar
  25. 25.
    Jeays, A. D., P. V. Lawford, R. Gillott, P. Spencer, D. C. Barber, K. D. Bardhan, and D. R. Hose. Characterisation of the haemodynamics of the superior mesenteric artery. J. Biomech. 40:1916–1926, 2007.CrossRefPubMedGoogle Scholar
  26. 26.
    Kaatee, R., F. J. Beek, E. J. Verschuyl, P. J. vd Ven, J. J. Beutler, J. P. van Schaik, and W. P. Mali. Atherosclerotic renal artery stenosis: ostial or truncal? Radiology 199:637–640, 1996.PubMedGoogle Scholar
  27. 27.
    Kahraman, H., M. Ozaydin, E. Varol, S. M. Aslan, A. Dogan, A. Altinbas, M. Demir, O. Gedikli, G. Acar, and O. Ergene. The diameters of the aorta and its major branches in patients with isolated coronary artery ectasia. Tex. Heart Inst. J. 33:463–468, 2006.PubMedGoogle Scholar
  28. 28.
    Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.PubMedGoogle Scholar
  29. 29.
    Kosinski, H. Variability of places of origin of the human renal arteries. Folia Morphol. (Warsz) 53:111–116, 1994.Google Scholar
  30. 30.
    Ku, D. N., S. Glagov, J. E. Moore, Jr., and C. K. Zarins. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study. J. Vasc. Surg. 9:309–316, 1989.CrossRefPubMedGoogle Scholar
  31. 31.
    Ladak, H. M., J. S. Milner, and D. A. Steinman. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J. Biomech. Eng. 122:96–99, 2000.CrossRefPubMedGoogle Scholar
  32. 32.
    Lederle, F. A., G. R. Johnson, S. E. Wilson, I. L. Gordon, E. P. Chute, F. N. Littooy, W. C. Krupski, D. Bandyk, G. W. Barone, L. M. Graham, R. J. Hye, and D. B. Reinke. Relationship of age, gender, race, and body size to infrarenal aortic diameter. The Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Investigators. J. Vasc. Surg. 26:595–601, 1997.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee, D., and J. Y. Chen. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches. J. Biomech. 35:1115–1122, 2002.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee, Y. T., W. F. Keitzer, F. R. Watson, and H. Liu. Vascular geometry at the abdominal aortic bifurcation. J. Am. Med. Women Assoc. 37:77–81, 1982.Google Scholar
  35. 35.
    Liepsch, D., A. Poll, J. Strigberger, H. N. Sabbah, and P. D. Stein. Flow visualization studies in a mold of the normal human aorta and renal arteries. J. Biomech. Eng. 111:222–227, 1989.CrossRefPubMedGoogle Scholar
  36. 36.
    Lilly, M. P., T. R. Harward, W. R. Flinn, D. R. Blackburn, P. M. Astleford, and J. S. Yao. Duplex ultrasound measurement of changes in mesenteric flow velocity with pharmacologic and physiologic alteration of intestinal blood flow in man. J. Vasc. Surg. 9:18–25, 1989.CrossRefPubMedGoogle Scholar
  37. 37.
    Long, Q., X. Y. Xu, M. Bourne, and T. M. Griffith. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn. Reson. Med. 43:565–576, 2000.CrossRefPubMedGoogle Scholar
  38. 38.
    Longia, G. S., V. Kumar, and C. D. Gupta. Intrarenal arterial pattern of human kidney-corrosion cast study. Anat. Anz. 155:183–194, 1984.PubMedGoogle Scholar
  39. 39.
    MacLean, N. F., and M. R. Roach. Thickness, taper, and ellipticity in the aortoiliac bifurcation of patients aged 1 day to 76 years. Heart Vessels 13:95–101, 1998.CrossRefPubMedGoogle Scholar
  40. 40.
    Moore, Jr., J., and J. L. Berry. Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng. 30:498–508, 2002.CrossRefPubMedGoogle Scholar
  41. 41.
    Moore, Jr., J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 116:337–346, 1994.CrossRefPubMedGoogle Scholar
  42. 42.
    Moore, Jr., J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. J. Biomech. Eng. 116:107–111, 1994.CrossRefPubMedGoogle Scholar
  43. 43.
    Moore, Jr., J. E., D. N. Ku, C. K. Zarins, and S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J. Biomech. Eng. 114:391–397, 1992.CrossRefPubMedGoogle Scholar
  44. 44.
    Moreno, M. R., J. E. Moore, Jr., and R. Meuli. Cross-sectional deformation of the aorta as measured with magnetic resonance imaging. J. Biomech. Eng. 120:18–21, 1998.CrossRefPubMedGoogle Scholar
  45. 45.
    Nguyen, N. D., and A. K. Haque. Effect of hemodynamic factors on atherosclerosis in the abdominal aorta. Atherosclerosis 84:33–39, 1990.CrossRefPubMedGoogle Scholar
  46. 46.
    O’Flynn, P. M., G. O’Sullivan, and A. S. Pandit. Methods for three-dimensional geometric characterization of the arterial vasculature. Ann. Biomed. Eng. 35:1368–1381, 2007.CrossRefPubMedGoogle Scholar
  47. 47.
    Ozan, H., A. Alemdaroglu, A. Sinav, and Y. Gumusalan. Location of the ostia of the renal arteries in the aorta. Surg. Radiol. Anat. 19:245–247, 1997.CrossRefPubMedGoogle Scholar
  48. 48.
    Pedersen, E. M., H. W. Sung, A. C. Burlson, and A. P. Yoganathan. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions. J. Biomech. 26:1237–1247, 1993.CrossRefPubMedGoogle Scholar
  49. 49.
    Pedersen, E. M., H. W. Sung, and A. P. Yoganathan. Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation. J. Biomech. Eng. 116:347–354, 1994.CrossRefPubMedGoogle Scholar
  50. 50.
    Pedersen, E. M., A. P. Yoganathan, and X. P. Lefebvre. Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation. J. Biomech. 25:935–944, 1992.CrossRefPubMedGoogle Scholar
  51. 51.
    Pedersen, O. M., A. Aslaksen, and H. Vik-Mo. Ultrasound measurement of the luminal diameter of the abdominal aorta and iliac arteries in patients without vascular disease. J. Vasc. Surg. 17:596–601, 1993.CrossRefPubMedGoogle Scholar
  52. 52.
    Pennington, N., and R. W. Soames. The anterior visceral branches of the abdominal aorta and their relationship to the renal arteries. Surg. Radiol. Anat. 27:395–403, 2005.CrossRefPubMedGoogle Scholar
  53. 53.
    Perktold, K., and M. Resch. Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis. J. Biomed. Eng. 12:111–123, 1990.CrossRefPubMedGoogle Scholar
  54. 54.
    Roberts, J. C., C. Moses, and R. H. Wilkins. Autopsy studies in atherosclerosis. 1. Distribution and severity of atherosclerosis in patients dying without morphologic evidence of atherosclerotic catastrophe. Circulation 20:511–519, 1959.Google Scholar
  55. 55.
    Robertson, S. W., D. B. Jessup, I. J. Boero, and C. P. Cheng. Right renal artery in vivo stent fracture. J. Vasc. Interv. Radiol. 19:439–442, 2008.CrossRefPubMedGoogle Scholar
  56. 56.
    Rocha-Singh, K., M. R. Jaff, and K. Rosenfield. Evaluation of the safety and effectiveness of renal artery stenting after unsuccessful balloon angioplasty: the ASPIRE-2 study. J. Am. Coll. Cardiol. 46:776–783, 2005.CrossRefPubMedGoogle Scholar
  57. 57.
    Rubin, G. D., E. J. Alfrey, M. D. Dake, C. P. Semba, F. G. Sommer, P. C. Kuo, D. C. Dafoe, J. A. Waskerwitz, D. A. Bloch, and R. B. Jeffrey. Assessment of living renal donors with spiral CT. Radiology 195:457–462, 1995.PubMedGoogle Scholar
  58. 58.
    Sabbah, H. N., E. T. Hawkins, and P. D. Stein. Flow separation in the renal arteries. Arteriosclerosis 4:28–33, 1984.PubMedGoogle Scholar
  59. 59.
    Shipkowitz, T., V. G. Rodgers, L. J. Frazin, and K. B. Chandran. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches. J. Biomech. 31:995–1007, 1998.CrossRefPubMedGoogle Scholar
  60. 60.
    Shipkowitz, T., V. G. Rodgers, L. J. Frazin, and K. B. Chandran. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches. J. Biomech. 33:717–728, 2000.CrossRefPubMedGoogle Scholar
  61. 61.
    Smedby, O. Geometrical risk factors for atherosclerosis in the femoral artery: a longitudinal angiographic study. Ann. Biomed. Eng. 26:391–397, 1998.CrossRefPubMedGoogle Scholar
  62. 62.
    Sonesson, B., T. Lanne, F. Hansen, and T. Sandgren. Infrarenal aortic diameter in the healthy person. Eur. J. Vasc. Surg. 8:89–95, 1994.CrossRefPubMedGoogle Scholar
  63. 63.
    Sun, H., B. D. Kuban, P. Schmalbrock, and M. H. Friedman. Measurement of the geometric parameters of the aortic bifurcation from magnetic resonance images. Ann. Biomed. Eng. 22:229–239, 1994.CrossRefPubMedGoogle Scholar
  64. 64.
    Suzuki, Y., F. Ikeno, J. K. Lyons, T. Koizumi, and A. C. Yeung. Novel stent system for accurate placement in aorto-ostial renal artery disease: preclinical study in porcine renal artery model. Cardiovasc. Revasc. Med. 8:99–102, 2007.CrossRefPubMedGoogle Scholar
  65. 65.
    Tada, S., and J. M. Tarbell. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Ann. Biomed. Eng. 33:1202–1212, 2005.CrossRefPubMedGoogle Scholar
  66. 66.
    Talenfeld, A. D., R. B. Schwope, H. J. Alper, E. I. Cohen, and R. A. Lookstein. MDCT angiography of the renal arteries in patients with atherosclerotic renal artery stenosis: implications for renal artery stenting with distal protection. Am. J. Roentgenol. 188:1652–1658, 2007.CrossRefGoogle Scholar
  67. 67.
    Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.CrossRefPubMedGoogle Scholar
  68. 68.
    Tanganelli, P., G. Bianciardi, C. Simoes, V. Attino, B. Tarabochia, and G. Weber. Distribution of lipid and raised lesions in aortas of young people of different geographic origins (WHO-ISFC PBDAY Study). World Health Organization-International Society and Federation of Cardiology. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler. Thromb. 13:1700–1710, 1993.PubMedGoogle Scholar
  69. 69.
    Taylor, C. A., T. J. Hughes, and C. K. Zarins. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann. Biomed. Eng. 26:975–987, 1998.CrossRefPubMedGoogle Scholar
  70. 70.
    Taylor, C. A., T. J. Hughes, and C. K. Zarins. Effect of exercise on hemodynamic conditions in the abdominal aorta. J. Vasc. Surg. 29:1077–1089, 1999.CrossRefPubMedGoogle Scholar
  71. 71.
    Thatipelli, M. R., E. A. Sabater, H. Bjarnason, M. A. McKusick, and S. Misra. CT angiography of renal artery anatomy for evaluating embolic protection devices. J. Vasc. Interv. Radiol. 18:842–846, 2007.CrossRefPubMedGoogle Scholar
  72. 72.
    Thomas, J. B., L. Antiga, S. L. Che, J. S. Milner, D. A. Steinman, J. D. Spence, and B. K. Rutt. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke 36:2450–2456, 2005.CrossRefPubMedGoogle Scholar
  73. 73.
    Thomas, J. B., J. S. Milner, and D. A. Steinman. On the influence of vessel planarity on local hemodynamics at the human carotid bifurcation. Biorheology 39:443–448, 2002.PubMedGoogle Scholar
  74. 74.
    Timmins, L. H., C. A. Meyer, M. R. Moreno, and J. E. Moore, Jr. Mechanical modeling of stents deployed in tapered arteries. Ann. Biomed. Eng. 36:2042–2050, 2008.CrossRefPubMedGoogle Scholar
  75. 75.
    Verschuyl, E. J., R. Kaatee, F. J. Beek, G. Pasterkamp, W. H. Bush, J. J. Beutler, P. J. van der Ven, and W. P. Mali. Renal artery origins: location and distribution in the transverse plane at CT. Radiology 203:71–75, 1997.PubMedGoogle Scholar
  76. 76.
    Wake, A. K., J. N. Oshinski, A. R. Tannenbaum, and D. P. Giddens. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131:021013, 2009.CrossRefPubMedGoogle Scholar
  77. 77.
    Weld, K. J., S. B. Bhayani, J. Belani, C. D. Ames, G. Hruby, and J. Landman. Extrarenal vascular anatomy of kidney: assessment of variations and their relevance to partial nephrectomy. Urology 66:985–989, 2005.CrossRefPubMedGoogle Scholar
  78. 78.
    Wijesinghe, L. D., D. J. Scott, and D. Kessel. Analysis of renal artery geometry may assist in the design of new stents for endovascular aortic aneurysm repair. Br. J. Surg. 84:797–799, 1997.CrossRefPubMedGoogle Scholar
  79. 79.
    Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101:1412–1418, 2006.CrossRefPubMedGoogle Scholar
  80. 80.
    Yahel, J., and B. Arensburg. The topographic relationships of the unpaired visceral branches of the aorta. Clin. Anat. 11:304–309, 1998.CrossRefPubMedGoogle Scholar
  81. 81.
    Yim, P. J., J. R. Cebral, A. Weaver, R. J. Lutz, O. Soto, G. B. Vasbinder, V. B. Ho, and P. L. Choyke. Estimation of the differential pressure at renal artery stenoses. Magn. Reson. Med. 51:969–977, 2004.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhu, H., Z. Ding, R. N. Piana, T. R. Gehrig, and M. H. Friedman. Cataloguing the geometry of the human coronary arteries: a potential tool for predicting risk of coronary artery disease. Int. J. Cardiol. 135:43–52, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Padraig M. O’Flynn
    • 1
    • 2
  • Gerard O’Sullivan
    • 3
  • Abhay S. Pandit
    • 1
    • 2
  1. 1.Department of Mechanical and Biomedical EngineeringNational University of Ireland, GalwayGalwayIreland
  2. 2.National Centre for Biomedical Engineering ScienceNational University of Ireland, GalwayGalwayIreland
  3. 3.Section of Interventional RadiologyUniversity College Hospital, GalwayGalwayIreland

Personalised recommendations