Annals of Biomedical Engineering

, Volume 38, Issue 3, pp 649–657

Behavior of Human Mesenchymal Stem Cells in Fibrin-Based Vascular Tissue Engineering Constructs

  • Eoin D. O’Cearbhaill
  • Mary Murphy
  • Frank Barry
  • Peter E. McHugh
  • Valerie Barron
Article

Abstract

A limitation of current tissue engineering vascular graft technology is the provision of an expandable, autologous cell source. By harnessing the multipotency of mesenchymal stem cells (MSC), it is hoped that functional vascular cells can be produced. To date, a range of 2D and 3D environments have been investigated for the manipulation of MSC differentiation pathways. To this end, this study aims to test the hypothesis that MSC seeded in various fibrin gel environments will exhibit evidence of a smooth muscle cell (SMC) phenotype. Initially, a range of cell-seeding densities were screened for 2D and 3D fibrin constructs, where it was observed that a seeding densities of 500,000 cells/mL facilitated gel compaction without degradation or loss in cell viability. Additionally, positive expression of CD49, CD73, CD105 markers and negative expression of hemopoietic stem cell-associated CD34 and CD45 indicated that MSC phenotype was retained within the fibrin gel. Nonetheless, a decrease in the gene expression of α-smooth cell actin and calponin was observed for MSC cultured in static 3D fibrin gels. Although a slight recovery was observed after 24 h mechanical stimulation, the fold-change remained significantly lower than that observed for cells cultured on 2D tissue culture plastic. While MSC differentiation toward a SMC appears possible in both 2D and 3D environments, scaffold architecture and mechanical stimulation undoubtedly play an important role in the creation of a functional SMC phenotype.

Keywords

Mesenchymal stem cell Fibrin scaffold 2D and 3D environments Biomechanical stimulation Hoop strain Differentiation Smooth muscle cell 

Abbreviations

MSC

Mesenchymal stem cell

α-SMA

α-Smooth cell actin

SMC

Smooth muscle cell

DMEM

Dulbecco’s modified Eagle’s medium

TBS

Tris-buffered saline

TEVG

Tissue-engineered vascular graft

References

  1. 1.
    Anderson, J. S., T. M. Price, S. R. Hanson, and L. A. Harker. In vitro endothelialization of small-caliber vascular grafts. Surgery 101(5):577–586, 1987.PubMedGoogle Scholar
  2. 2.
    Aper, T., O. E. Teebken, G. Steinhoff, and A. Haverich. Use of a fibrin preparation in the engineering of a vascular graft model. Eur. J. Vasc. Endovasc. Surg. 28(3):296–302, 2004.CrossRefPubMedGoogle Scholar
  3. 3.
    Barocas, V. H., T. S. Girton, and R. T. Tranquillo. Engineered alignment in media equivalents: Magnetic prealignment and mandrel compaction. J. Biomech. Eng. 120(5):660–666, 1998.CrossRefPubMedGoogle Scholar
  4. 4.
    Calderwood, D. A., S. J. Shattil, and M. H. Ginsberg. Integrins and actin filaments: Reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275(30):22607–22610, 2000.CrossRefPubMedGoogle Scholar
  5. 5.
    Cho, S. W., S. H. Lim, I. K. Kim, Y. S. Hong, S. S. Kim, K. J. Yoo, H. Y. Park, Y. Jang, B. C. Chang, and C. Y. Choi. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg. 241(3):506–515, 2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Christman, K. L., A. J. Vardanian, Q. Fang, R. E. Sievers, H. H. Fok, and R. J. Lee. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol. 44(3):654–660, 2004.CrossRefPubMedGoogle Scholar
  7. 7.
    Cox, S., M. Cole, and B. Tawil. Behavior of human dermal fibroblasts in three-dimensional fibrin clots: dependence on fibrinogen and thrombin concentration. Tissue Eng. 10(5–6):942–954, 2004.CrossRefPubMedGoogle Scholar
  8. 8.
    Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708, 2001.CrossRefPubMedGoogle Scholar
  9. 9.
    Cummings, C. L., D. Gawlitta, R. M. Nerem, and J. P. Stegemann. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25(17):3699–3706, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    DeMali, K. A., K. Wennerberg, and K. Burridge. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15(5):572–582, 2003.CrossRefPubMedGoogle Scholar
  11. 11.
    Emura, M., A. Ochiai, M. Horino, W. Arndt, K. Kamino, and S. Hirohashi. Development of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1. In Vitro Cell. Dev. Biol. Anim. 36(2):77–80, 2000.CrossRefPubMedGoogle Scholar
  12. 12.
    Engelmayr, Jr., G. C., V. L. Sales, J. E. Mayer, Jr., and M. S. Sacks. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues. Biomaterials 27(36):6083–6095, 2006.CrossRefPubMedGoogle Scholar
  13. 13.
    Gundy, S., G. Manning, E. O’Connell, V. Ellä, M. Sri Harwoko, Y. Rochev, T. J. Smith, and V. Barron. Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold. Acta Biomater. 4(6):1734–1744, 2008.CrossRefPubMedGoogle Scholar
  14. 14.
    Ho, W., B. Tawil, J. C. Dunn, and B. M. Wu. The behavior of human mesenchymal stem cells in 3D fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Eng. 12(6):1587–1595, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Huang, C. Y., M. A. Deitzer, and H. S. Cheung. Effects of fibrinolytic inhibitors on chondrogenesis of bone-marrow derived mesenchymal stem cells in fibrin gels. Biomech. Model. Mechanobiol. 6(1–2):5–11, 2007.CrossRefPubMedGoogle Scholar
  16. 16.
    Kadletz, M., H. Magometschnigg, E. Minar, G. Konig, M. Grabenwoger, M. Grimm, and E. Wolner. Implantation of in vitro endothelialized polytetrafluoroethylene grafts in human beings: A preliminary report. J. Thorac. Cardiovasc. Surg. 104(3):736–742, 1992.PubMedGoogle Scholar
  17. 17.
    Kashiwakura, Y., Y. Katoh, K. Tamayose, H. Konishi, N. Takaya, S. Yuhara, M. Yamada, K. Sugimoto, and H. Daida. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Circulation 107(16):2078–2081, 2003.CrossRefPubMedGoogle Scholar
  18. 18.
    Kinner, B., J. M. Zaleskas, and M. Spector. Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp. Cell Res. 278(1):72–83, 2002.CrossRefPubMedGoogle Scholar
  19. 19.
    Kjaergard, H. K., and H. R. Trumbull. Vivostat system autologous fibrin sealant: preliminary study in elective coronary bypass grafting. Ann. Thorac. Surg. 66(2):482–486, 1998.CrossRefPubMedGoogle Scholar
  20. 20.
    Kurpinski, K., J. Chu, C. Hashi, and S. Li. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Natl Acad. Sci. USA 103(44):16095–16100, 2006.CrossRefPubMedGoogle Scholar
  21. 21.
    Kurpinski, K., J. Park, R. G. Thakar, and S. Li. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol. Cell. Biomech. 3(1):21–34, 2006.PubMedGoogle Scholar
  22. 22.
    Li, S., J. J. Moon, H. Miao, G. Jin, B. P. C. Chen, S. Yuan, Y. Hu, S. Usami, and S. Chien. Signal transduction in matrix contraction and the migration of vascular smooth muscle cells in three-dimensional matrix. J. Vasc. Res. 40(4):378–388, 2003.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu, J. Y., D. D. Swartz, H. F. Peng, S. F. Gugino, J. A. Russell, and S. T. Andreadis. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc. Res. 75(3):618–628, 2007.CrossRefPubMedGoogle Scholar
  24. 24.
    Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408, 2001.CrossRefPubMedGoogle Scholar
  25. 25.
    Murphy, J. M., D. J. Fink, E. B. Hunziker, and F. P. Barry. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48(12):3464–3474, 2003.CrossRefPubMedGoogle Scholar
  26. 26.
    Nieponice, A., T. M. Maul, J. M. Cumer, L. Soletti, and D. A. Vorp. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J. Biomed. Mater. Res. A 81(3):523–530, 2007.PubMedGoogle Scholar
  27. 27.
    O’Cearbhaill, E. D., M. Punchard, M. Murphy, F. Barry, P. E. McHugh, and V. Barron. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 29(11):1610, 2007.CrossRefGoogle Scholar
  28. 28.
    Park, J. S., J. S. Chu, C. Cheng, F. Chen, D. Chen, and S. Li. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88(3):359–368, 2004.CrossRefPubMedGoogle Scholar
  29. 29.
    Park, J. S., N. F. Huang, K. T. Kurpinski, S. Patel, S. Hsu, and S. Li. Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair. Front. Biosci. 12:5098–5116, 2007.CrossRefPubMedGoogle Scholar
  30. 30.
    Pelham, R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94(25):13661–13665, 1997.CrossRefPubMedGoogle Scholar
  31. 31.
    Punchard, M. A., C. Stenson-Cox, E. D. O’Cearbhaill, E. Lyons, S. Gundy, L. Murphy, A. Pandit, P. E. McHugh, and V. Barron. Endothelial cell response to biomechanical forces under simulated vascular loading conditions. J. Biomech. 40(14):3146–3154, 2007.CrossRefPubMedGoogle Scholar
  32. 32.
    Reyna, S., D. Ensenat, F. Johnson, H. Wang, A. Schafer, and W. Durante. Cyclic strain stimulates proline transport in vascular smooth muscle cells. Am. J. Hypertens. 17(8):712–717, 2004.CrossRefPubMedGoogle Scholar
  33. 33.
    Riha, G. M., P. H. Lin, A. B. Lumsden, Q. Yao, and C. Chen. Review: application of stem cells for vascular tissue engineering. Tissue Eng. 11(9–10):1535–1552, 2005.CrossRefPubMedGoogle Scholar
  34. 34.
    Ross, J. J., and R. T. Tranquillo. ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 22(6):477–490, 2003.CrossRefPubMedGoogle Scholar
  35. 35.
    Simpson, D., H. Liu, T. H. M. Fan, R. Nerem, and S. C. Dudley, Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells 25(9):2350–2357, 2007.CrossRefPubMedGoogle Scholar
  36. 36.
    Stops, A. J., L. A. McMahon, D. O’Mahoney, P. J. Prendergast, and P. E. McHugh. A finite element prediction of strain on cells in a highly porous collagen-glycosaminoglycan scaffold. J. Biomech. Eng. 130(6):061001, 2008.CrossRefPubMedGoogle Scholar
  37. 37.
    Swartz, D. D., J. A. Russell, and S. T. Andreadis. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J. Physiol. Heart Circ. Physiol. 288(3):H1451–H1460, 2005.CrossRefPubMedGoogle Scholar
  38. 38.
    Tuan, T. L., A. Song, S. Chang, S. Younai, and M. E. Nimni. In vitro fibroplasia: Matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res. 223(1):127–134, 1996.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang, D., J. S. Park, J. S. Chu, A. Krakowski, K. Luo, D. J. Chen, and S. Li. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J. Biol. Chem. 279(42):43725–43734, 2004.CrossRefPubMedGoogle Scholar
  40. 40.
    Ye, Q., G. Zund, P. Benedikt, S. Jockenhoevel, S. P. Hoerstrup, S. Sakyama, J. A. Hubbell, and M. Turina. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur. J. Cardiothorac. Surg. 17(5):587–591, 2000.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Eoin D. O’Cearbhaill
    • 1
    • 2
  • Mary Murphy
    • 3
  • Frank Barry
    • 3
  • Peter E. McHugh
    • 1
    • 2
  • Valerie Barron
    • 1
    • 3
  1. 1.National Centre for Biomedical Engineering ScienceNational University of Ireland, GalwayGalwayIreland
  2. 2.Department of Mechanical and Biomedical EngineeringNational University of Ireland, GalwayGalwayIreland
  3. 3.Regenerative Medicine Institute, National Centre for Biomedical Engineering ScienceNational University of Ireland, GalwayGalwayIreland

Personalised recommendations