Annals of Biomedical Engineering

, Volume 38, Issue 3, pp 1188–1203 | Cite as

Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions

Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California
  • Charles A. TaylorEmail author
  • David A. Steinman
Position Paper


The objective of our session at the 2008 International Bio-Fluid Symposium and Workshop was to review the state-of-the-art in image-based modeling of blood flow, and identify future directions. Here we summarize progress in the field of image-based modeling of blood flow and vessel wall dynamics from mid-2005 to early 2009. We first describe the tremendous progress made in the application of image-based modeling techniques to elucidate the role of hemodynamics in vascular pathophysiology, plan treatments for congenital and acquired diseases in individual patients, and design and evaluate endovascular devices. We then review the advances that have been made in improving the methodology for modeling blood flow and vessel wall dynamics in image-based models, and consider issues related to extracting hemodynamic parameters and verification and validation. Finally, the strengths and weaknesses of current work in image-based modeling and the opportunities and threats to the field are described. We believe that with a doubling of our efforts toward the clinical application of image-based modeling tools, the next few years could surpass the tremendous gains made in the last few.


Image-based modeling Patient-specific Hemodynamics Atherosclerosis Aneurysms Surgical planning 



Abdominal aortic aneurysms


Arbitrary Lagrangian–Eulerian


Computational fluid dynamics


Computed tomography


Intima-media thickness


Invasive intravascular ultrasound


Magnetic resonance angiograms


Magnetic resonance imaging


Phase contrast magnetic resonance imaging




Wall shear stress



This review is based on material presented at the International Biofluids Symposium and Workshop, Pasadena, CA, March 28–30, 2008. Taylor’s research on which this work is based has been supported, in part, by grants from the National Science Foundation (ITR-0205741) and the National Institutes of Health through the NIH Roadmap for Medical Research Grant U54 GM072970. Information on the National Centers for Biomedical Computing can be obtained from Steinman’s work on image-based modeling has been supported by a Career Investigator Award from the Heart & Stroke Foundation, as well as by grants from that agency and from the Canadian Institutes of Health Research. The invaluable contributions from our many collaborators, staff, trainees and study volunteers are gratefully acknowledged.


  1. 1.
    Acevedo-Bolton, G., L. D. Jou, B. P. Dispensa, M. T. Lawton, R. T. Higashida, A. J. Martin, W. L. Young, and D. Saloner. Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: Technical case report. Neurosurgery 59:E429–E430, 2006; author reply E429–E430.Google Scholar
  2. 2.
    Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46:1097–1112, 2008.PubMedCrossRefGoogle Scholar
  3. 3.
    Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46:77–81, 2009.PubMedGoogle Scholar
  4. 4.
    Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23:704–713, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Appanaboyina, S., F. Mut, R. Lohner, C. A. Putman, and J. R. Cebral. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int. J. Numer. Meth. Fluids 57:475–493, 2008.CrossRefGoogle Scholar
  6. 6.
    Augst, A. D., B. Ariff, G. T. S. A. Mc, X. Y. Xu, and A. D. Hughes. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am. J. Physiol. Heart Circ. Physiol. 293:H1031–H1037, 2007.PubMedCrossRefGoogle Scholar
  7. 7.
    Babuska, I., and J. T. Oden. Verification and validation in computational engineering and science: basic concepts. Comput. Meth. Appl. Mech. Eng. 193:4057–4066, 2004.CrossRefGoogle Scholar
  8. 8.
    Bazilevs, Y., V. M. Calo, Y. Zhang, and T. J. R. Hughes. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38:310–322, 2006.CrossRefGoogle Scholar
  9. 9.
    Bekkers, E. J., and C. A. Taylor. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Trans. Med. Imaging 27:331–341, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Bijari, P. B., L. Antiga, and D. A. Steinman. Reliability of vascular geometry factors derived from clinical MRA. In: Proc. SPIE Medical Imaging, San Diego, CA, 2009.Google Scholar
  11. 11.
    Blanco, P. J., R. A. Feijoo, and S. A. Urquiza. A unified variational approach for coupling 3d–1d models and its blood flow applications. Comput. Meth. Appl. Mech. Eng. 196:4391–4410, 2007.CrossRefGoogle Scholar
  12. 12.
    Botti, L., M. Piccinelli, B. Ene-Iordache, A. Remuzzi, and L. Antiga. An adaptive mesh refinement solver for large-scale simulation of biological flows. Int. J. Numer. Meth. Biomed. Eng. 26:86–100, 2010.CrossRefGoogle Scholar
  13. 13.
    Boussel, L., V. Rayz, A. Martin, G. Acevedo-Bolton, M. T. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: Comparison with computational fluid dynamics. Magn. Reson. Med. 61:409–417, 2009.PubMedCrossRefGoogle Scholar
  14. 14.
    Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress: Patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002, 2008.PubMedCrossRefGoogle Scholar
  15. 15.
    Bove, E. L., M. R. de Leval, F. Migliavacca, R. Balossino, and G. Dubini. Toward optimal hemodynamics: computer modeling of the Fontan circuit. Pediatr. Cardiol. 28:477–481, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Castro, M. A., C. M. Putman, and J. R. Cebral. Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am. J. Neuroradiol. 27:2061–2068, 2006.PubMedGoogle Scholar
  17. 17.
    Causin, P., J. F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Meth. Appl. Mech. Eng. 194:4506–4527, 2005.CrossRefGoogle Scholar
  18. 18.
    Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24:457–467, 2005.PubMedCrossRefGoogle Scholar
  19. 19.
    Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26:2550–2559, 2005.PubMedGoogle Scholar
  20. 20.
    Cebral, J. R., and R. Lohner. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans. Med. Imaging 24:468–476, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Cebral, J. R., R. S. Pergolizzi, and C. M. Putman. Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad. Radiol. 14:804–813, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Chatzizisis, Y. S., M. Jonas, A. U. Coskun, R. Beigel, B. V. Stone, C. Maynard, R. G. Gerrity, W. Daley, C. Rogers, E. R. Edelman, C. L. Feldman, and P. H. Stone. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117:993–1002, 2008.PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng, C., F. Helderman, D. Tempel, D. Segers, B. Hierck, R. Poelmann, A. van Tol, D. J. Duncker, D. Robbers-Visser, N. T. Ursem, R. van Haperen, J. J. Wentzel, F. Gijsen, A. F. van der Steen, R. de Crom, and R. Krams. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis 195:225–235, 2007.PubMedCrossRefGoogle Scholar
  24. 24.
    Cheng, C., D. Tempel, R. van Haperen, A. van der Baan, F. Grosveld, M. J. Daemen, R. Krams, and R. de Crom. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Dalman, R. L., M. M. Tedesco, J. Myers, and C. A. Taylor. AAA disease: mechanism, stratification, and treatment. Ann. NY Acad. Sci. 1085:92–109, 2006.PubMedCrossRefGoogle Scholar
  26. 26.
    de Leval, M. R., P. Kilner, M. Gewillig, and C. Bull. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J. Thorac. Cardiovasc. Surg. 96:682–695, 1988.PubMedGoogle Scholar
  27. 27.
    de Zelicourt, D. A., K. Pekkan, J. Parks, K. Kanter, M. Fogel, and A. P. Yoganathan. Flow study of an extracardiac connection with persistent left superior vena cava. J. Thorac. Cardiovasc. Surg. 131:785–791, 2006.PubMedCrossRefGoogle Scholar
  28. 28.
    DeGroff, C., B. Birnbaum, R. Shandas, W. Orlando, and J. Hertzberg. Computational simulations of the total cavo-pulmonary connection: insights in optimizing numerical solutions. Med. Eng. Phys. 27:135–146, 2005.PubMedCrossRefGoogle Scholar
  29. 29.
    Dyverfeldt, P., J. P. Kvitting, A. Sigfridsson, J. Engvall, A. F. Bolger, and T. Ebbers. Assessment of fluctuating velocities in disturbed cardiovascular blood flow: in vivo feasibility of generalized phase-contrast MRI. J. Magn. Reson. Imaging 28:655–663, 2008.PubMedCrossRefGoogle Scholar
  30. 30.
    Ethier, C. R. Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30:461–471, 2002.PubMedCrossRefGoogle Scholar
  31. 31.
    Feintuch, A., P. Ruengsakulrach, A. Lin, J. Zhang, Y. Q. Zhou, J. Bishop, L. Davidson, D. Courtman, F. S. Foster, D. A. Steinman, R. M. Henkelman, and C. R. Ethier. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292:H884–H892, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Fernandez, M. A., J.-F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Meth. Eng. 69:794–821, 2007.CrossRefGoogle Scholar
  33. 33.
    Figueroa, C. A., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for coupled fluid–solid growth modeling in cardiovascular simulations. Comput. Meth. Appl. Mech. Eng. 198:3583–3602, 2009.CrossRefGoogle Scholar
  34. 34.
    Figueroa, C. A., C. A. Taylor, A. J. Chiou, V. Yeh, and C. K. Zarins. Effect of curvature on displacement forces acting on aortic endografts: a three dimensional computational analysis. J. Endovas. Ther. 16:284–294, 2009.CrossRefGoogle Scholar
  35. 35.
    Figueroa, C. A., C. A. Taylor, A. J. Chiou, V. Yeh, and C. K. Zarins. Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J. Endovasc. Ther. 16:350–358, 2009.PubMedCrossRefGoogle Scholar
  36. 36.
    Figueroa, C. A., I. E. Vignon-Clementel, K. C. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Meth. Appl. Mech. Eng. 195:5685–5706, 2006.CrossRefGoogle Scholar
  37. 37.
    Ford, M. D., S. W. Lee, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: towards a surrogate geometric marker of intra-aneurismal hemodynamics. J. Biomech. 41:241–248, 2008.PubMedCrossRefGoogle Scholar
  38. 38.
    Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130:021015, 2008.PubMedCrossRefGoogle Scholar
  39. 39.
    Ford, M. D., G. R. Stuhne, H. N. Nikolov, D. F. Habets, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 24:1586–1592, 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Ford, M. D., Y. J. Xie, B. A. Wasserman, and D. A. Steinman. Is flow in the common carotid artery fully developed? Physiol. Meas. 29:1335–1349, 2008.PubMedCrossRefGoogle Scholar
  41. 41.
    Förster, C., W. A. Wall, and E. Ramm. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Meth. Appl. Mech. Eng. 196:1278–1293, 2007.CrossRefGoogle Scholar
  42. 42.
    Friedman, M. H., H. A. Himburg, and J. A. LaMack. Statistical hemodynamics: a tool for evaluating the effect of fluid dynamic forces on vascular biology in vivo. J. Biomech. Eng. 128:965–968, 2006.PubMedCrossRefGoogle Scholar
  43. 43.
    Frydrychowicz, A., A. Berger, M. F. Russe, A. F. Stalder, A. Harloff, S. Dittrich, J. Hennig, M. Langer, and M. Markl. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 tesla for blood flow and wall shear stress analysis. J. Thorac. Cardiovasc. Surg. 136:400–407, 2008.PubMedCrossRefGoogle Scholar
  44. 44.
    Gerbeau, J.-F., M. Vidrascu, and P. Frey. Fluid–structure interaction in blood flows on geometries based on medical imaging. Comput. Struct. 83:155–165, 2005.CrossRefGoogle Scholar
  45. 45.
    Gijsen, F. J., J. J. Wentzel, A. Thury, B. Lamers, J. C. Schuurbiers, P. W. Serruys, and A. F. van der Steen. A new imaging technique to study 3-d plaque and shear stress distribution in human coronary artery bifurcations in vivo. J. Biomech. 40:2349–2357, 2007.PubMedCrossRefGoogle Scholar
  46. 46.
    Gijsen, F. J., J. J. Wentzel, A. Thury, F. Mastik, J. A. Schaar, J. C. Schuurbiers, C. J. Slager, W. J. van der Giessen, P. J. de Feyter, A. F. van der Steen, and P. W. Serruys. Strain distribution over plaques in human coronary arteries relates to shear stress. Am. J. Physiol. Heart Circ. Physiol. 295:H1608–H1614, 2008.PubMedCrossRefGoogle Scholar
  47. 47.
    Glor, F. P., B. Ariff, A. D. Hughes, L. A. Crowe, P. R. Verdonck, D. C. Barratt, G. T. S. A. Mc, D. N. Firmin, and X. Y. Xu. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol. Meas. 25:1495–1509, 2004.PubMedCrossRefGoogle Scholar
  48. 48.
    Glor, F. P., B. Ariff, A. D. Hughes, P. R. Verdonck, D. C. Barratt, A. D. Augst, S. A. Thom, and X. Y. Xu. Influence of head position on carotid hemodynamics in young adults. Am. J. Physiol. Heart Circ. Physiol. 287:H1670–H1681, 2004.PubMedCrossRefGoogle Scholar
  49. 49.
    Glor, F. P., B. Ariff, A. D. Hughes, P. R. Verdonck, S. A. Thom, D. C. Barratt, and X. Y. Xu. Operator dependence of 3-d ultrasound-based computational fluid dynamics for the carotid bifurcation. IEEE Trans. Med. Imaging 24:451–456, 2005.PubMedCrossRefGoogle Scholar
  50. 50.
    Glor, F. P., Q. Long, A. D. Hughes, A. D. Augst, B. Ariff, S. A. Thom, P. R. Verdonck, and X. Y. Xu. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann. Biomed. Eng. 31:142–151, 2003.PubMedCrossRefGoogle Scholar
  51. 51.
    Greve, J. M., A. S. Les, B. T. Tang, M. T. Draney Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, and C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291:H1700–H1708, 2006.PubMedCrossRefGoogle Scholar
  52. 52.
    Groen, H. C., F. J. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. F. van der Steen, C. Yuan, and J. J. Wentzel. Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 38:2379–2381, 2007.PubMedCrossRefGoogle Scholar
  53. 53.
    Harloff, A., F. Albrecht, J. Spreer, A. F. Stalder, J. Bock, A. Frydrychowicz, J. Schollhorn, A. Hetzel, M. Schumacher, J. Hennig, and M. Markl. 3d blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4d MRI at 3T. Magn. Reson. Med. 61:65–74, 2009.PubMedCrossRefGoogle Scholar
  54. 54.
    Hassan, T., M. Ezura, E. V. Timofeev, T. Tominaga, T. Saito, A. Takahashi, K. Takayama, and T. Yoshimoto. Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am. J. Neuroradiol. 25:63–68, 2004.PubMedGoogle Scholar
  55. 55.
    Hassan, T., E. V. Timofeev, M. Ezura, T. Saito, A. Takahashi, K. Takayama, and T. Yoshimoto. Hemodynamic analysis of an adult vein of Galen aneurysm malformation by use of 3d image-based computational fluid dynamics. AJNR Am. J. Neuroradiol. 24:1075–1082, 2003.PubMedGoogle Scholar
  56. 56.
    Himburg, H. A., S. E. Dowd, and M. H. Friedman. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am. J. Physiol. Heart Circ. Physiol. 293:H645–H653, 2007.PubMedCrossRefGoogle Scholar
  57. 57.
    Himburg, H. A., and M. H. Friedman. Correspondence of low mean shear and high harmonic content in the porcine iliac arteries. J. Biomech. Eng. 128:852–856, 2006.PubMedCrossRefGoogle Scholar
  58. 58.
    Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.PubMedCrossRefGoogle Scholar
  59. 59.
    Hofer, M., G. Rappitsch, K. Perktold, W. Trubel, and H. Schima. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J. Biomech. 29:1297–1308, 1996.PubMedCrossRefGoogle Scholar
  60. 60.
    Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128:844–851, 2006.PubMedCrossRefGoogle Scholar
  61. 61.
    Hope, M. D., D. D. Purcell, T. A. Hope, C. von Morze, D. B. Vigneron, M. T. Alley, and W. P. Dillon. Complete intracranial arterial and venous blood flow evaluation with 4d flow MR imaging. AJNR Am. J. Neuroradiol. 30:362–366, 2009.PubMedCrossRefGoogle Scholar
  62. 62.
    Hope, T. A., M. Markl, L. Wigstrom, M. T. Alley, D. C. Miller, and R. J. Herfkens. Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J. Magn. Reson. Imaging 26:1471–1479, 2007.PubMedCrossRefGoogle Scholar
  63. 63.
    Howell, B. A., T. Kim, A. Cheer, H. Dwyer, D. Saloner, and T. A. Chuter. Computational fluid dynamics within bifurcated abdominal aortic stent-grafts. J. Endovasc. Ther. 14:138–143, 2007.PubMedCrossRefGoogle Scholar
  64. 64. Accessed on March 22, 2009.
  65. 65. Accessed on March 22, 2009.
  66. 66. Accessed on March 22, 2009.
  67. 67. Accessed on March 22, 2009.
  68. 68.
    Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.PubMedCrossRefGoogle Scholar
  69. 69.
    Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.PubMedCrossRefGoogle Scholar
  70. 70.
    Ideker, T., T. Galitski, and L. Hood. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2:343–372, 2001.PubMedCrossRefGoogle Scholar
  71. 71.
    Jou, L. D., C. M. Quick, W. L. Young, M. T. Lawton, R. Higashida, A. Martin, and D. Saloner. Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am. J. Neuroradiol. 24:1804–1810, 2003.PubMedGoogle Scholar
  72. 72.
    Jou, L. D., G. Wong, B. Dispensa, M. T. Lawton, R. T. Higashida, W. L. Young, and D. Saloner. Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am. J. Neuroradiol. 26:2357–2363, 2005.PubMedGoogle Scholar
  73. 73.
    Kadirvel, R., Y. H. Ding, D. Dai, H. Zakaria, A. M. Robertson, M. A. Danielson, D. A. Lewis, H. J. Cloft, and D. F. Kallmes. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology 49:1041–1053, 2007.PubMedCrossRefGoogle Scholar
  74. 74.
    Kakalis, N. M., A. P. Mitsos, J. V. Byrne, and Y. Ventikos. The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE Trans. Med. Imaging 27:814–824, 2008.PubMedCrossRefGoogle Scholar
  75. 75.
    Kassab, G. S. Scaling laws of vascular trees: of form and function. Am. J. Physiol. Heart Circ. Physiol. 290:H894–H903, 2006.PubMedCrossRefGoogle Scholar
  76. 76.
    Kim, T., A. Y. Cheer, and H. A. Dwyer. A simulated dye method for flow visualization with a computational model for blood flow. J. Biomech. 37:1125–1136, 2004.PubMedCrossRefGoogle Scholar
  77. 77.
    Kleinstreuer, C., S. Hyun, J. R. Buchanan, Jr., P. W. Longest, J. P. Archie, Jr., and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.PubMedGoogle Scholar
  78. 78.
    Kleinstreuer, C., Z. Li, and M. A. Farber. Fluid–structure interaction analyses of stented abdominal aortic aneurysms. Annu. Rev. Biomed. Eng. 9:169–204, 2007.PubMedCrossRefGoogle Scholar
  79. 79.
    Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3d geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3d reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17:2061–2065, 1997.PubMedGoogle Scholar
  80. 80.
    Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33:257–269, 2005.PubMedCrossRefGoogle Scholar
  81. 81.
    LaDisa, Jr., J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972–980, 2003.PubMedCrossRefGoogle Scholar
  82. 82.
    Lagana, K., R. Balossino, F. Migliavacca, G. Pennati, E. L. Bove, M. R. de Leval, and G. Dubini. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38:1129–1141, 2005.PubMedCrossRefGoogle Scholar
  83. 83.
    LaMack, J. A., H. A. Himburg, X. M. Li, and M. H. Friedman. Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability. Ann. Biomed. Eng. 33:457–464, 2005.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee, S. E., S. W. Lee, P. F. Fischer, H. S. Bassiouny, and F. Loth. Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J. Biomech. 41:2551–2561, 2008.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee, S. W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39:2341–2347, 2008.PubMedCrossRefGoogle Scholar
  86. 86.
    Lee, S. W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131:061013, 2009.PubMedCrossRefGoogle Scholar
  87. 87.
    Lee, S.-W., D. S. Smith, F. Loth, P. F. Fischer, and H. S. Bassiouny. Numerical and experimental simulation of transitional flow in a blood vessel junction. Numer. Heat Transf. A-Appl. 51:1–22, 2007.CrossRefGoogle Scholar
  88. 88.
    Lee, S. W., and D. A. Steinman. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129:273–278, 2007.PubMedCrossRefGoogle Scholar
  89. 89.
    Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng., In press.Google Scholar
  90. 90.
    Leuprecht, A., K. Perktold, M. Prosi, T. Berk, W. Trubel, and H. Schima. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomech. 35:225–236, 2002.PubMedCrossRefGoogle Scholar
  91. 91.
    Li, Z. H., and C. Kleinstreuer. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27:369–382, 2005.PubMedCrossRefGoogle Scholar
  92. 92.
    Löhner, R., J. R. Cebral, F. E. Camelli, S. Appanaboyina, J. D. Baum, E. L. Mestreau, and O. A. Soto. Adaptive embedded and immersed unstructured grid techniques. Comput. Meth. Appl. Mech. Eng. 197:2173–2197, 2008.CrossRefGoogle Scholar
  93. 93.
    Lundstrom, C., P. Ljung, A. Persson, and A. Ynnerman. Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Trans. Vis. Comput. Graph. 13:1648–1655, 2007.PubMedCrossRefGoogle Scholar
  94. 94.
    Markl, M., F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, R. Wicker, C. A. Taylor, R. J. Herfkens, and N. J. Pelc. Time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging 17:499–506, 2003.PubMedCrossRefGoogle Scholar
  95. 95.
    Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137:394–403, 2009.PubMedCrossRefGoogle Scholar
  96. 96.
    Marsden, A. L., J. A. Feinstein, and C. A. Taylor. A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Meth. Appl. Mech. Eng. 197:1890–1905, 2008.CrossRefGoogle Scholar
  97. 97.
    Marsden, A. L., I. E. Vignon-Clementel, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 35:250–263, 2007.PubMedCrossRefGoogle Scholar
  98. 98.
    Meckel, S., A. F. Stalder, F. Santini, E. W. Radu, D. A. Rufenacht, M. Markl, and S. G. Wetzel. In vivo visualization and analysis of 3-d hemodynamics in cerebral aneurysms with flow-sensitized 4-d MR imaging at 3T. Neuroradiology. 50:473–484, 2008.PubMedCrossRefGoogle Scholar
  99. 99.
    Meng, H., D. D. Swartz, Z. Wang, Y. Hoi, J. Kolega, E. M. Metaxa, M. P. Szymanski, J. Yamamoto, E. Sauvageau, and E. I. Levy. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery 59:1094–1100, 2006 (discussion 1100-1).PubMedCrossRefGoogle Scholar
  100. 100.
    Migliavacca, F., R. Balossino, G. Pennati, G. Dubini, T. Y. Hsia, M. R. de Leval, and E. L. Bove. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39:1010–1020, 2006.PubMedCrossRefGoogle Scholar
  101. 101.
    Migliavacca, F., M. R. de Leval, G. Dubini, and R. Pietrabissa. A computational pulsatile model of the bidirectional cavopulmonary anastomosis: the influence of pulmonary forward flow. J. Biomech. Eng. 118:520–528, 1996.PubMedCrossRefGoogle Scholar
  102. 102.
    Migliavacca, F., M. R. de Leval, G. Dubini, R. Pietrabissa, and R. Fumero. Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit. Med. Eng. Phys. 21:187–193, 1999.PubMedCrossRefGoogle Scholar
  103. 103.
    Migliavacca, F., G. Dubini, G. Pennati, R. Pietrabissa, R. Fumero, T.-Y. Hsia, and M. R. de Leval. Computational model of the fluid dynamics in systemic-to-pulmonary shunts. J. Biomech. 33:549–557, 2000.PubMedCrossRefGoogle Scholar
  104. 104.
    Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28:143–156, 1998.PubMedCrossRefGoogle Scholar
  105. 105.
    Mistretta, C. A. Undersampled radial mr acquisition and highly constrained back projection (hypr) reconstruction: potential medical imaging applications in the post-nyquist era. J. Magn. Reson. Imaging 29:501–516, 2009.PubMedCrossRefGoogle Scholar
  106. 106.
    Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech. 40:519–534, 2007.PubMedCrossRefGoogle Scholar
  107. 107.
    Moyle, K. R., L. Antiga, and D. A. Steinman. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J. Biomech. Eng. 128:371–379, 2006.PubMedCrossRefGoogle Scholar
  108. 108.
    Müller, J., O. Sahni, X. Li, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Anisotropic adaptive finite element method for modelling blood flow. Comput. Meth. Appl. Mech. Eng. 8:295–305, 2005.Google Scholar
  109. 109.
    Olufsen, M. S. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–H268, 1999.PubMedGoogle Scholar
  110. 110.
    Pekkan, K., B. Whited, K. Kanter, S. Sharma, D. de Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med. Biol. Eng. Comput. 46:1139–1152, 2008.PubMedCrossRefGoogle Scholar
  111. 111.
    Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.PubMedCrossRefGoogle Scholar
  112. 112.
    Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3d computational hemodynamics. J. Biomech. Eng. 123:134–144, 2001.PubMedCrossRefGoogle Scholar
  113. 113.
    Prosi, M., K. Perktold, Z. H. Ding, and M. H. Friedman. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37:1767–1775, 2004.PubMedCrossRefGoogle Scholar
  114. 114.
    Radaelli, A. G., L. Augsburger, J. R. Cebral, M. Ohta, D. A. Rufenacht, R. Balossino, G. Benndorf, D. R. Hose, A. Marzo, R. Metcalfe, P. Mortier, F. Mut, P. Reymond, L. Socci, B. Verhegghe, and A. F. Frangi. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model—a report on the virtual intracranial stenting challenge 2007. J. Biomech. 41:2069–2081, 2008.PubMedCrossRefGoogle Scholar
  115. 115.
    Rafii, B. Y., O. J. Abilez, P. Benharash, and C. K. Zarins. Lateral movement of endografts within the aneurysm sac is an indicator of stent-graft instability. J. Endovasc. Ther. 15:335–343, 2008.PubMedCrossRefGoogle Scholar
  116. 116.
    Rayz, V. L., L. Boussel, G. Acevedo-Bolton, A. J. Martin, W. L. Young, M. T. Lawton, R. Higashida, and D. Saloner. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130:051011, 2008.PubMedCrossRefGoogle Scholar
  117. 117.
    Rayz, V. L., L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida, and D. Saloner. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36:1793–1804, 2008.PubMedCrossRefGoogle Scholar
  118. 118.
    Roache, P. J. Verification and Validation in Computational Science and Engineering. Albuquerque: Hermosa Publishers, p. 446, 1998.Google Scholar
  119. 119.
    Ryval, J., A. G. Straatman, and D. A. Steinman. Two-equation turbulence modeling of pulsatile flow in a stenosed tube. J. Biomech. Eng. 126:625–635, 2004.PubMedCrossRefGoogle Scholar
  120. 120.
    Sahni, O., K. E. Jansen, M. S. Shephard, C. A. Taylor, and M. W. Beall. Adaptive boundary layer meshing for viscous flow simulations. Eng. Comput. 24:267–285, 2008.CrossRefGoogle Scholar
  121. 121.
    Sahni, O., K. E. Jansen, C. A. Taylor, and M. S. Shephard. Automated adaptive cardiovascular flow simulations. Eng. Comput. 25:25–36, 2009.CrossRefGoogle Scholar
  122. 122.
    Sahni, O., J. Müller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Meth. Appl. Mech. Eng. 195:5634–5655, 2006.CrossRefGoogle Scholar
  123. 123.
    Schmidt, J. P., S. L. Delp, M. A. Sherman, C. A. Taylor, V. S. Pande, and R. B. Altman. The simbios national center: systems biology in motion. Proc. IEEE 96:1266–1280, 2008.CrossRefGoogle Scholar
  124. 124.
    Sforza, D. M., C. M. Putman, and J. R. Cebral. Hemodynamics of cerebral aneurysms. Annu. Rev. Fluid Mech. 41:91–107, 2009.PubMedCrossRefGoogle Scholar
  125. 125.
    Shadden, S. C., and C. A. Taylor. Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36:1152–1162, 2008.PubMedCrossRefGoogle Scholar
  126. 126.
    Sharma, S., S. Goudy, P. Walker, S. Panchal, A. Ensley, K. Kanter, V. Tam, D. Fyfe, and A. Yoganathan. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J. Am. Coll. Cardiol. 27:1264–1269, 1996.PubMedCrossRefGoogle Scholar
  127. 127.
    Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42:550–554, 2009.PubMedCrossRefGoogle Scholar
  128. 128.
    Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505, 2004.PubMedCrossRefGoogle Scholar
  129. 129.
    Slager, C. J., J. J. Wentzel, F. J. Gijsen, A. Thury, A. C. van der Wal, J. A. Schaar, and P. W. Serruys. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat. Clin. Pract. Cardiovasc. Med. 2:456–464, 2005.PubMedCrossRefGoogle Scholar
  130. 130.
    Slager, C. J., J. J. Wentzel, J. C. Schuurbiers, J. A. Oomen, J. Kloet, R. Krams, C. von Birgelen, W. J. van der Giessen, P. W. Serruys, and P. J. de Feyter. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102:511–516, 2000.PubMedGoogle Scholar
  131. 131.
    Spilker, R. L., J. A. Feinstein, D. W. Parker, V. M. Reddy, and C. A. Taylor. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35:546–559, 2007.PubMedCrossRefGoogle Scholar
  132. 132.
    Spilker, R. L., and C. A. Taylor. Incorporating physiological measurements in image-based hemodynamic simulations. In: Fifth International Biofluids Symposium and Workshop, Pasadena, CA, 2008.Google Scholar
  133. 133.
    Steele, B. N., M. S. Olufsen, and C. A. Taylor. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Meth. Biomech. Biomed. Eng. 10:39–51, 2007.CrossRefGoogle Scholar
  134. 134.
    Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30:483–497, 2002.PubMedCrossRefGoogle Scholar
  135. 135.
    Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24:559–566, 2003.PubMedGoogle Scholar
  136. 136.
    Steinman, D. A., and C. A. Taylor. Flow imaging and computing: large artery hemodynamics. Ann. Biomed. Eng. 33:1704–1709, 2005.PubMedCrossRefGoogle Scholar
  137. 137.
    Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47:149–159, 2002.PubMedCrossRefGoogle Scholar
  138. 138.
    Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark, M. Sonka, A. Wahle, O. J. Ilegbusi, Y. Yeghiazarians, J. J. Popma, J. Orav, R. E. Kuntz, and C. L. Feldman. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation. 108:438–444, 2003.PubMedCrossRefGoogle Scholar
  139. 139.
    Stonebridge, P. A., and C. M. Brophy. Spiral laminar flow in arteries? Lancet 338:1360–1361, 1991.PubMedCrossRefGoogle Scholar
  140. 140.
    Stuhne, G. R., and D. A. Steinman. Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126:382–387, 2004.PubMedCrossRefGoogle Scholar
  141. 141.
    Suo, J., D. E. Ferrara, D. Sorescu, R. E. Guldberg, W. R. Taylor, and D. P. Giddens. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27:346–351, 2007.PubMedCrossRefGoogle Scholar
  142. 142.
    Tambasco, M., and D. A. Steinman. On assessing the quality of particle tracking through computational fluid dynamic models. J. Biomech. Eng. 124:166–175, 2002.PubMedCrossRefGoogle Scholar
  143. 143.
    Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.PubMedCrossRefGoogle Scholar
  144. 144.
    Tang, D., C. Yang, S. Mondal, F. Liu, G. Canton, T. S. Hatsukami, and C. Yuan. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2d/3d FSI models. J. Biomech. 41:727–736, 2008.PubMedCrossRefGoogle Scholar
  145. 145.
    Taylor, C. A., and M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36:197–231, 2004.CrossRefGoogle Scholar
  146. 146.
    Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4:231–247, 1999.PubMedCrossRefGoogle Scholar
  147. 147.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Computational investigations in vascular disease. Comput. Phys. 10:224–232, 1996.Google Scholar
  148. 148.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Meth. Appl. Mech. Eng. 158:155–196, 1998.CrossRefGoogle Scholar
  149. 149.
    Tezduyar, T. E., S. Sathe, M. Schwaab, and B. S. Conklin. Arterial fluid mechanics modeling with the stabilized space-time fluid–structure interaction technique. Int. J. Numer. Meth. Fluids 57:601–629, 2008.CrossRefGoogle Scholar
  150. 150.
    Thomas, J. B., J. S. Milner, B. K. Rutt, and D. A. Steinman. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31:132–141, 2003.PubMedCrossRefGoogle Scholar
  151. 151.
    Torii, R., M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Comput. Mech. 43:151–159, 2008.CrossRefGoogle Scholar
  152. 152.
    Torii, R., N. B. Wood, N. Hadjiloizou, A. W. Dowsey, A. R. Wright, A. D. Hughes, J. Davies, D. P. Francis, J. Mayet, G. Z. Yang, S. A. Thom, and X. Y. Xu. Stress phase angle depicts differences in coronary artery hemodynamics due to changes in flow and geometry after percutaneous coronary intervention. Am. J. Physiol. Heart Circ. Physiol. 296:H765–H776, 2009.PubMedCrossRefGoogle Scholar
  153. 153.
    Vermeersch, S. J., E. R. Rietzschel, M. L. De Buyzere, D. De Bacquer, G. De Backer, L. M. Van Bortel, T. C. Gillebert, P. R. Verdonck, and P. Segers. Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects. Physiol. Meas. 29:1267–1280, 2008.PubMedCrossRefGoogle Scholar
  154. 154.
    Vignon-Clementel, I. E., C. A. Figueroa, K. C. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Meth. Appl. Mech. Eng. 195:3776–3796, 2006.CrossRefGoogle Scholar
  155. 155.
    Wake, A. K., J. N. Oshinski, A. R. Tannenbaum, and D. P. Giddens. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131:021013, 2009.PubMedCrossRefGoogle Scholar
  156. 156.
    Wang, K. C., R. W. Dutton, and C. A. Taylor. Improving geometric model construction for blood flow modeling. Eng. Med. Biol. 18:33–39, 1999.CrossRefGoogle Scholar
  157. 157.
    Weinberg, P. D., and C. Ross Ethier. Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. J. Biomech. 40:1594–1598, 2007.PubMedCrossRefGoogle Scholar
  158. 158.
    Wellnhofer, E., L. Goubergrits, U. Kertzscher, K. Affeld, and E. Fleck. Novel non-dimensional approach to comparison of wall shear stress distributions in coronary arteries of different groups of patients. Atherosclerosis 202:483–490, 2009.PubMedCrossRefGoogle Scholar
  159. 159.
    Wentzel, J. J., F. J. Gijsen, J. C. Schuurbiers, R. Krams, P. W. Serruys, P. J. De Feyter, and C. J. Slager. Geometry guided data averaging enables the interpretation of shear stress related plaque development in human coronary arteries. J. Biomech. 38:1551–1555, 2005.PubMedCrossRefGoogle Scholar
  160. 160.
    Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:I165–I171, 2007.PubMedCrossRefGoogle Scholar
  161. 161.
    Wilson, N. M., F. R. Arko, and C. A. Taylor. Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease. Comput. Aided Surg. 10:257–277, 2005.PubMedCrossRefGoogle Scholar
  162. 162.
    Wolters, B., M. C. M. Rutten, G. W. H. Schurink, U. Kose, J. de Hart, and F. N. van de Vosse. A patient-specific computational model of fluid–structure interaction in abdominal aortic aneurysms. Med. Eng. Phys. 27:871–883, 2005.PubMedCrossRefGoogle Scholar
  163. 163.
    Womersley, J. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.PubMedGoogle Scholar
  164. 164.
    Womersley, J. R. Oscillatory motion of a viscous liquid in a thin-walled elastic tube. I. The linear approximation for long waves. Philos. Mag. 7:199–221, 1955.Google Scholar
  165. 165.
    Wood, N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, and X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101:1412–1418, 2006.PubMedCrossRefGoogle Scholar
  166. 166.
    Yamashita, S., H. Isoda, M. Hirano, H. Takeda, S. Inagawa, Y. Takehara, M. T. Alley, M. Markl, N. J. Pelc, and H. Sakahara. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging 25:473–478, 2007.PubMedCrossRefGoogle Scholar
  167. 167.
    Yeung, J. J., H. J. Kim, T. A. Abbruzzese, I. E. Vignon-Clementel, M. T. Draney-Blomme, K. K. Yeung, I. Perkash, R. J. Herfkens, C. A. Taylor, and R. L. Dalman. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. J. Vasc. Surg. 44:1254–1265, 2006.PubMedCrossRefGoogle Scholar
  168. 168.
    Young, H. K., P. G. Walker, A. A. Fontaine, S. Panchal, A. E. Ensley, J. Oshinski, S. Sharma, B. Ha, C. L. Lucas, and A. P. Yoganathan. Hemodynamics of the Fontan connection: an in-vitro study. J. Biomech. Eng. 117:423–428, 1995.CrossRefGoogle Scholar
  169. 169.
    Younis, H. F., M. R. Kaazempur-Mofrad, R. C. Chan, A. G. Isasi, D. P. Hinton, A. H. Chau, L. A. Kim, and R. D. Kamm. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model. Mechanobiol. 3:17–32, 2004.PubMedCrossRefGoogle Scholar
  170. 170.
    Zarins, C. K., and C. A. Taylor. Endovascular device design in the future: transformation from trial and error to computational design. J. Endovasc. Ther. 16:I-12–21, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Departments of Bioengineering and SurgeryStanford UniversityStanfordUSA
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations