Annals of Biomedical Engineering

, Volume 38, Issue 3, pp 1164–1177 | Cite as

Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions

Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28–30, 2008 Pasadena, California
  • Seok Chung
  • Ryo Sudo
  • Vernella Vickerman
  • Ioannis K. Zervantonakis
  • Roger D. Kamm
Position Paper


Recent advances in microfluidic technologies have opened the door for creating more realistic in vitro cell culture methods that replicate many aspects of the true in vivo microenvironment. These new designs (i) provide enormous flexibility in controlling the critical biochemical and biomechanical factors that influence cell behavior, (ii) allow for the introduction of multiple cell types in a single system, (iii) provide for the establishment of biochemical gradients in two- or three-dimensional geometries, and (iv) allow for high quality, time-lapse imaging. Here, some of the recent developments are reviewed, with a focus on studies from our own laboratory in three separate areas: angiogenesis, cell migration in the context of tumor cell-endothelial interactions, and liver tissue engineering.


Cell culture Cancer Tissue engineering Liver Vascular networks 







Electric cell-substrate impedance sensing


Extracellular matrix


Endothelial cell


Sinusoidal endothelial cell


Epidermal growth factor


Human microvascular endothelial cells


Hepatic stellate cell




Vascular endothelial growth factor



The authors would like to express their gratitude to Draper Laboratories (IR&D Project N. DL-H-550151), the National Science Foundation (EFRI-0735997), the NHLBI (EB003805), and the Singapore-MIT Alliance for Research and Technology.


  1. 1.
    Albini, A. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47:3239–3245, 1987.PubMedGoogle Scholar
  2. 2.
    Ateshia, G. A. Artificial cartilage: weaving in three dimensions. Nat. Mater. 6:89–90, 2007.CrossRefGoogle Scholar
  3. 3.
    Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–725, 2003.CrossRefPubMedGoogle Scholar
  4. 4.
    Bayless, K. J., R. Salazar, and G. E. Davis. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the αvβ3 and α5β1 integrins. Am. J. Pathol. 156:1673–1683, 2000.PubMedGoogle Scholar
  5. 5.
    Bhatia, S. N., U. J. Balis, M. L. Yarmush, and M. Toner. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13:1883–1900, 1999.PubMedGoogle Scholar
  6. 6.
    Bockhorn, M., R. K. Jain, and L. L. Munn. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 8:444–448, 2007.CrossRefPubMedGoogle Scholar
  7. 7.
    Burns, A. R. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J. Immunol. 159:2893–2903, 1997.PubMedGoogle Scholar
  8. 8.
    Burns, A. R., R. A. Bowden, S. D. MacDonell, D. C. Walker, T. O. Odebunmi, E. M. Donnachie, S. I. Simon, M. L. Entman, and C. W. Smith. Analysis of tight junctions during neutrophil transendothelial migration. J. Cell Sci. 113:45–57, 2000.PubMedGoogle Scholar
  9. 9.
    Cabodi, M., N. W. Choi, J. P. Gleghorn, C. S. Lee, L. J. Bonassar, and A. D. Stroock. A microfluidic biomaterial. J. Am. Chem. Soc. 127:13788–13789, 2005.CrossRefPubMedGoogle Scholar
  10. 10.
    Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257, 2000.CrossRefPubMedGoogle Scholar
  11. 11.
    Charrier, L., Y. Yan, A. Driss, C. L. Laboisse, S. V. Sitaraman, and D. Merlin. ADAM-15 inhibits wound healing in human intestinal epithelial cell monolayers. Am. J. Physiol-Gastrointest. Liver Physiol. 288:346–353, 2005.CrossRefGoogle Scholar
  12. 12.
    Cheng, S. Y., S. Heilman, M. Wasserman, S. Archer, M. L. Shuler, and M. Wu. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769, 2007.CrossRefPubMedGoogle Scholar
  13. 13.
    Chicurel, M. Cell biology. Cell migration research is on the move. Science 295(5555):606–609, 2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Choi, N. W., M. Cabodi, B. Held, J. P. Gleghorn, L. J. Bonassar, and A. D. Stroock. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6:908–915, 2007.CrossRefPubMedGoogle Scholar
  15. 15.
    Chung, B. G., L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip. 5:401–406, 2005.CrossRefPubMedGoogle Scholar
  16. 16.
    Chung, S., R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip. 9:269–275, 2009.CrossRefPubMedGoogle Scholar
  17. 17.
    Colville-Nash, P. R., and D. L. Scott. Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Ann. Rheum. Dis. 51:919–925, 1992.CrossRefPubMedGoogle Scholar
  18. 18.
    Craighead, H. G., C. D. James, and A. M. P. Turner. Current Issues and Advances in Dissociated Cell Culturing on Nano- and Microfabricated Substrates. Advanced Semiconductor and Organic Nano-techniques, Vol. 5. New York: Academic Press, 2003, 251 ppGoogle Scholar
  19. 19.
    Damji, A., L. Weston, and D. M. Brunett. Directed confrontations between fibroblasts and epithelial cells on micromachined grooved substrata. Exp. Cell Res. 228:114–124, 1996.CrossRefPubMedGoogle Scholar
  20. 20.
    Davis, G. E., K. J. Bayless, and A. Mavila. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268:252–275, 2002.CrossRefPubMedGoogle Scholar
  21. 21.
    Discher, D. E., P. Janmey, and Y. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.CrossRefPubMedGoogle Scholar
  22. 22.
    Earley, S., and G. E. Plopper. Disruption of focal adhesion kinase slows transendothelial migration of AU-565 breast cancer cells. Biochem. Biophys. Res. Commun. 350:405–412, 2006.CrossRefPubMedGoogle Scholar
  23. 23.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefPubMedGoogle Scholar
  24. 24.
    Even-Ram, S., and K. M. Yamada. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:524–532, 2005.CrossRefPubMedGoogle Scholar
  25. 25.
    Folkman, J. Looking for a good endothelial address. Cancer Cell 1:113–115, 2002.CrossRefPubMedGoogle Scholar
  26. 26.
    Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6:273–286, 2007.CrossRefPubMedGoogle Scholar
  27. 27.
    Frevert, C. W., G. Boggy, T. M. Keenan, and A. Folch. Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab Chip. 6:849–856, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Friedl, P., and K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3:362–374, 2003.CrossRefPubMedGoogle Scholar
  29. 29.
    Frisk, T., S. Rydholm, T. Liebmann, H. A. Svahn, G. Stemme, and H. Brismar. A microfluidic device for parallel 3-D cell cultures in asymmetric environments. Electrophoresis 28:4705–4712, 2007.CrossRefPubMedGoogle Scholar
  30. 30.
    Gomez-Sjoberg, R., A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79:8557–8563, 2007.CrossRefPubMedGoogle Scholar
  31. 31.
    Gerber, D., S. J. Maerkl, and S. R. Quake. An in vitro microfluidic approach to generating protein-interaction networks. Nat. Methods 6:71–74, 2008. doi: 10.1038/nmeth.1289.
  32. 32.
    Ghajar, C. M., K. S. Blevins, C. C. W. Hughes, S. C. George, and A. J. Putnam. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12:2875–2888, 2006.CrossRefPubMedGoogle Scholar
  33. 33.
    Giaever, I., and C. R. Keese. Micromotion of mammalian cells measured electrically. Proc. Natl Acad. Sci. 88:7896–7900, 1991.CrossRefPubMedGoogle Scholar
  34. 34.
    Gillette, B. M., J. A. Jensen, B. Tang, G. J. Yang, A. Bazargan-Lari, M. Zhong, and S. K. Sia. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nat. Mater. 7:636–640, 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    Griffith, L. G., and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002.CrossRefPubMedGoogle Scholar
  36. 36.
    Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.CrossRefPubMedGoogle Scholar
  37. 37.
    Hadjout, N., G. Lacvsky, D. A. Knecht, and M. A. Lynes. Automated real-time measurement of chemotactic cell motility. Biotechniques 31:1130–1139, 2001.PubMedGoogle Scholar
  38. 38.
    Helm, C. L. E., M. E. Fleury, A. H. Zisch, F. Boschetti, and M. A. Swartz. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. 102:15779–15784, 2005.CrossRefPubMedGoogle Scholar
  39. 39.
    Hong, S., E. Ergezen, R. Lec, and K. A. Barbee. Real-time analysis of cell-surface adhesive interactions using thickness shear mode resonator. Biomaterials 27:5813–5820, 2006.CrossRefPubMedGoogle Scholar
  40. 40.
    Hughes, F. J., and C. A. McCulloch. Quantification of chemotactic response of quiescent and proliferating fibroblasts in Boyden chambers by computer-assisted image analysis. J. Histochem. Cytochem. 39:243–246, 1991.PubMedGoogle Scholar
  41. 41.
    Hui, E. E., and S. N. Bhatia. From the cover: micromechanical control of cell–cell interactions. Proc. Natl. Acad. Sci. 104:5722, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Hwa, A. J., R. C. Fry, A. Sivaraman, P. T. So, L. D. Samson, D. B. Stolz, and L. G. Griffith. Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J. 21:2564, 2007.CrossRefPubMedGoogle Scholar
  43. 43.
    Ito, Y. Surface micropatterning to regulate cell functions. Biomaterials 20:2333–2342, 1999.CrossRefPubMedGoogle Scholar
  44. 44.
    Jeon, N. L., H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:826–830, 2002.Google Scholar
  45. 45.
    Junqueira, L. C. U., and J. Carneiro. Basic Histology: Text & Atlas. New York: McGraw-Hill, 2005.Google Scholar
  46. 46.
    Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. 103:2480–2487, 2006.CrossRefPubMedGoogle Scholar
  47. 47.
    Khetani, S. R., and S. N. Bhatia. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26:120, 2007.CrossRefPubMedGoogle Scholar
  48. 48.
    Kim, M. S., J. H. Yeon, and J. K. Park. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed. Microdevices 9:25–34, 2007.CrossRefPubMedGoogle Scholar
  49. 49.
    Koch, A. E. Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum. 41:951–962, 1998.CrossRefPubMedGoogle Scholar
  50. 50.
    Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell (Cambridge) 84:359–369, 1996.Google Scholar
  51. 51.
    Ling, Y., J. Rubin, Y. Deng, C. Huang, U. Demirci, J. M. Karp, and A. Khademhosseini. A cell-laden microfluidic hydrogel. Lab Chip. 7:756–762, 2007.CrossRefPubMedGoogle Scholar
  52. 52.
    Lo, C. M., C. R. Keese, and I. Giaever. Monitoring motion of confluent cells in tissue culture. Exp. Cell Res. 204:102–109, 1993.CrossRefPubMedGoogle Scholar
  53. 53.
    Luo, Y., and M. S. Shoichet. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3:249–253, 2004.CrossRefPubMedGoogle Scholar
  54. 54.
    Mace, K. A., S. L. Hansen, C. Myers, D. M. Young, and N. Boudreau. HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J. Cell Sci. 118:2567–2577, 2005.CrossRefPubMedGoogle Scholar
  55. 55.
    Mack, P. J., Y. Zhang, S. Chung, V. Vickerman, R. D. Kamm, and G. Garcia-Cardena. Biomechanical regulation of endothelial-dependent events critical for adaptive remodeling. J. Biol. Chem. 284:8412–8420, 2009.CrossRefPubMedGoogle Scholar
  56. 56.
    Mao, H., P. S. Cremer, and M. D. Manson. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. 100:5449–5454, 2003.CrossRefPubMedGoogle Scholar
  57. 57.
    Martinez-Hernandez, A., and P. S. Amenta. The extracellular matrix in hepatic regeneration. FASEB J. 9:1401–1410, 1995.PubMedGoogle Scholar
  58. 58.
    Meyvantsson, I., and D. J. Beebe. Cell culture models in microfluidic systems. Ann. Rev. Analyt. Chem. 1:423–449, 2008.CrossRefGoogle Scholar
  59. 59.
    Moutos, F. T., L. E. Freed, and F. Guilak. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6:162–167, 2007.CrossRefPubMedGoogle Scholar
  60. 60.
    Nakanishi, J., T. Takarada, K. Yamaguchi, and M. Maeda. Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal. Sci. 24:67–72, 2003.CrossRefGoogle Scholar
  61. 61.
    Nakatsu, M. N., R. C. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Pérez-del-Pulgar, P. M. Carpenter, and C. C. Hughes. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc. Res. 66:102–112, 2003.CrossRefPubMedGoogle Scholar
  62. 62.
    Noiri, E., E. Lee, J. Testa, J. Quigley, D. Colflesh, C. R. Keese, I. Giaever, and M. S. Goligorsky. Podokinesis in endothelial cell migration: role of nitric oxide. Am. J. Physiol. Cell Physiol. 274:236–244, 1998.Google Scholar
  63. 63.
    O’Brien, E. R., M. R. Garvin, R. Dev, D. K. Stewart, T. Hinohara, J. B. Simpson, and S. M. Schwartz. Angiogenesis in human coronary atherosclerotic plaques. Am. J. Pathol. 145:883–894, 1994.PubMedGoogle Scholar
  64. 64.
    Paguirigan, A., and D. J. Beebe. Gelatin based microfluidic devices for cell culture. Lab Chip. 6:407–413, 2006.CrossRefPubMedGoogle Scholar
  65. 65.
    Paguirigan, A. L., and D. J. Beebe. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. Bioessays 30:811–821, 2008.CrossRefPubMedGoogle Scholar
  66. 66.
    Powers, M. J., K. Domansky, M. R. A. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K. E. Wack, D. B. Stolz, R. Kamm, and L. G. Griffith. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78:257–269, 2002.CrossRefPubMedGoogle Scholar
  67. 67.
    Powers, M. J., D. M. Janigian, K. E. Wack, C. S. Baker, D. B. Stolz, and L. G. Griffith. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng. 8:499–513, 2002.CrossRefPubMedGoogle Scholar
  68. 68.
    Ren, J., Y. Xiao, L. S. Singh, X. Zhao, Z. Zhao, L. Feng, T. M. Rose, G. D. Prestwich, and Y. Xu. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res. 66:3006–3014, 2006.CrossRefPubMedGoogle Scholar
  69. 69.
    Richert, L., Y. Arntz, P. Schaaf, J. C. Voegel, and C. Picart. pH dependent growth of poly(l-lysine)/poly(l-glutamic) acid multilayer films and their cell adhesion properties. Surf. Sci. 570:13–29, 2004.CrossRefGoogle Scholar
  70. 70.
    Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. Cell migration: integrating signals from front to back. Science 302:1704, 2003.CrossRefPubMedGoogle Scholar
  71. 71.
    Rojas, J. D., S. R. Sennoune, D. Maiti, K. Bakunts, M. Reuveni, S. C. Sanka, G. M. Martinez, E. A. Seftor, C. J. Meininger, G. Wu, D. E. Wesson, M. J. Hendrix, and R. Martínez-Zaguilán. Vacuolar-type H+-ATPases at the plasma membrane regulate pH and cell migration in microvascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 291:H1147–H1157, 2006.CrossRefPubMedGoogle Scholar
  72. 72.
    Saadi, W., S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9:627–635, 2007.CrossRefPubMedGoogle Scholar
  73. 73.
    Sagnella, S. M., F. Kligman, E. H. Anderson, J. E. King, G. Murugesan, R. E. Marchant, and K. Kottke-Marchant. Human microvascular endothelial cell growth and migration on biomimetic surfactant polymers. Biomaterials 25:1249–1259, 2004.CrossRefPubMedGoogle Scholar
  74. 74.
    Selmeczi, D., S. Mosler, P. H. Hagedorn, N. B. Larsen, and H. Flyvbjerg. Cell motility as persistent random motion: theories from experiments. Biophys. J. 89:912–931, 2005.CrossRefPubMedGoogle Scholar
  75. 75.
    Shizukuda, Y., S. Tang, R. Yokota, and J. A. Ware. Vascular endothelial growth factor-induced endothelial cell migration and proliferation depend on a nitric oxide-mediated decrease in protein kinase Cdelta activity. Circ. Res. 85:247–256, 1999.PubMedGoogle Scholar
  76. 76.
    Sieuwerts, A. M., J. G. M. Klijn, and J. A. Foekens. Assessment of the invasive potential of human gynecological tumor cell lines with the in vitro Boyden chamber assay: influences of the ability of cells to migrate through the filter membrane. Clin. Exp. Metastasis 15:53–62, 1997.CrossRefPubMedGoogle Scholar
  77. 77.
    Smith, C. W., R. Rothlein, B. J. Hughes, M. M. Mariscalco, H. E. Rudloff, F. C. Schmalstieg, and D. C. Anderson. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. J. Clin. Invest. 82:1746, 1988.CrossRefPubMedGoogle Scholar
  78. 78.
    Sudo, R., S. Chung, I. Zervantonakis, V. Vickerman, Y. Toshimitsu, L. Griffith, and R. D. Kamm. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23(7):2155–2164, 2009.CrossRefPubMedGoogle Scholar
  79. 79.
    Sudo, R., T. Mitaka, M. Ikeda, and K. Tanishita. Reconstruction of 3D stacked-up structures by rat small hepatocytes on microporous membranes. FASEB J. 19:1695–1697, 2005.PubMedGoogle Scholar
  80. 80.
    Swartz, M. A., and M. E. Fleury. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9:229–256, 2007.CrossRefPubMedGoogle Scholar
  81. 81.
    Toh, Y. C., C. Zhang, J. Zhang, Y. M. Khong, S. Chang, V. D. Samper, D. van Noort, D. W. Hutmacher, and H. Yu. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip. 7:302–309, 2007.CrossRefPubMedGoogle Scholar
  82. 82.
    Vernon, R. B., and E. H. Sage. A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57:118–133, 1999.CrossRefPubMedGoogle Scholar
  83. 83.
    Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip. 8:1468–1477, 2008.CrossRefPubMedGoogle Scholar
  84. 84.
    Walker, G. M., and D. J. Beebe. A passive pumping method for microfluidic devices. Lab Chip. 2:131–134, 2002.CrossRefPubMedGoogle Scholar
  85. 85.
    Walker, G. M., J. Sai, A. Richmond, M. Stremler, C. Y. Chung, and J. P. Wikswo. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip. 5:611–618, 2005.CrossRefPubMedGoogle Scholar
  86. 86.
    Wang, S. J., W. Saadi, F. Lin, C. Minh-Canh Nguyen, and N. Li Jeon. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp. Cell Res. 300:180–189, 2004.CrossRefPubMedGoogle Scholar
  87. 87.
    Waters, C. M., J. Long, I. Gorshkova, Y. Fujiwara, M. Connell, K. E. Belmonte, G. Tigyi, V. Natarajan, S. Pyne, and N. J. Pyne. Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. FASEB J. 20:509–511, 2006.PubMedGoogle Scholar
  88. 88.
    Weber, A. J., and M. De Bandt. Angiogenesis: general mechanisms and implications for rheumatoid arthritis. Joint Bone Spine 67:366–383, 2000.PubMedGoogle Scholar
  89. 89.
    Wenger, A., A. Stahl, H. Weber, G. Finkenzeller, H. G. Augustin, G. B. Stark, and U. Kneser. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 10:1536–1547, 2004.PubMedGoogle Scholar
  90. 90.
    Winter, P. M., A. M. Morawski, S. D. Caruthers, R. W. Fuhrhop, H. Zhang, T. A. Williams, J. S. Allen, R. K. Lacy, J. D. Robertson, G. M. Lanza, and S. A. Wickline. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274, 2003.CrossRefPubMedGoogle Scholar
  91. 91.
    Wong, A. P., R. Perez-Castillejos, J. Christopher Love, and G. M. Whitesides. Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Biomaterials 29:1853–1861, 2008.CrossRefPubMedGoogle Scholar
  92. 92.
    Yamada, K. M., and E. Cukierman. Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610, 2007.CrossRefPubMedGoogle Scholar
  93. 93.
    Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13:1443–1453, 2007.CrossRefPubMedGoogle Scholar
  94. 94.
    Yarrow, J., Z. Perlman, N. Westwood, and T. Mitchison. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 4:21, 2004.CrossRefPubMedGoogle Scholar
  95. 95.
    Yilmaz, M., G. Christofori, and F. Lehembre. Distinct mechanisms of tumor invasion and metastasis. Trends Mol. Med. 13:535–541, 2007.CrossRefPubMedGoogle Scholar
  96. 96.
    Young, B., J. W. Heath, A. Stevens, J. S. Lowe, P. R. Wheater, and H. G. Burkitt. Wheater’s Functional Histology: A Text and Colour Atlas. Edinburg: Churchill Livingstone, 2000.Google Scholar
  97. 97.
    Zhong, J. F., Y. Chen, J. S. Marcus, A. Scherer, S. R. Quake, C. R. Taylor, and L. P. Weiner. A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip. 8:68–74, 2006.CrossRefGoogle Scholar
  98. 98.
    Zinchenko, Y. S., C. R. Culberson, and R. N. Coger. Contribution of non-parenchymal cells to the performance of micropatterned hepatocytes. Tissue Eng. 12:2241–2251, 2006.CrossRefPubMedGoogle Scholar
  99. 99.
    Zinchenko, Y. S., L. W. Schrum, M. Clemens, and R. N. Coger. Hepatocyte and Kupffer cells co-cultured on micropatterned surfaces to optimize hepatocyte function. Tissue Eng. 12:751–761, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Seok Chung
    • 1
  • Ryo Sudo
    • 2
  • Vernella Vickerman
    • 3
  • Ioannis K. Zervantonakis
    • 4
  • Roger D. Kamm
    • 4
    • 5
  1. 1.School of Mechanical EngineeringKorea UniversitySeoulKorea
  2. 2.Department of System Design EngineeringKeio UniversityYokohamaJapan
  3. 3.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations