Annals of Biomedical Engineering

, Volume 39, Issue 5, pp 1403–1413 | Cite as

Effect of Hemodynamic Forces on Platelet Aggregation Geometry

  • Elham Tolouei
  • Christopher J. Butler
  • Andreas Fouras
  • Kris Ryan
  • Gregory J. Sheard
  • Josie Carberry
Article

Abstract

The shear rate dependence of platelet aggregation geometries is investigated using a combination of in vitro and numerical experiments. Changes in upstream shear rate, γPw, are found to cause systematic changes in mature platelet aggregation geometries. However, γPw is not the only factor determining the shear rate experienced by a platelet moving over, and adhering to, a platelet aggregation: flow simulations demonstrate that naturally occurring variations in platelet aggregation geometry cause the local shear rate on the surface of a mature platelet aggregation to vary between zero and up to eight times γPw. Additionally, as a platelet aggregation grows, systematic changes in geometry are found, indicating that the local shear field over a growing platelet aggregation will differ from that over mature platelet aggregations.

Keywords

Platelets Platelet aggregation Shear rate Mature platelet aggregation Exposure time 

References

  1. 1.
    Bhatt, D. L., and E. J. Topol. Scientific and therapeutic advances in antiplatelet therapy. Nat. Rev. 15:15–28, 2003.Google Scholar
  2. 2.
    Fouras, A., D. Lo Jacono, C. V. Nguyen, and K. Hourigan. Volumetric correlation PIV: a new technique for 3D velocity vector field measurement. Exp. Fluids 47:569–577, 2009.CrossRefGoogle Scholar
  3. 3.
    Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.Google Scholar
  4. 4.
    Huo, Y. Q., and K. F. Ley. Role of platelets in the development of atherosclerosis. Trends Cardiovasc. Med. 14:18–22, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Jackson, S. P. The growing complexity of platelet aggregation. Blood 109:5087–5095, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Mangin, P., C. L. Yap, C. Nonne, S. A. Sturgeon, I. Goncalves, Y. P. Yuan, S. M. Schoenwaelder, C. E. Wright, F. Lanza, and S. P. Jackson. Thrombin overcomes the thrombosis defect associated with platelet gpvi/fcr gamma deficiency. Blood 107:4346–4353, 2006.PubMedCrossRefGoogle Scholar
  7. 7.
    Maxwell, M. J., E. Westein, W. S. Nesbitt, S. Giuliano, S. M. Dopheide, and S. P. Jackson. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109:566–576, 2007.PubMedCrossRefGoogle Scholar
  8. 8.
    Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.PubMedCrossRefGoogle Scholar
  9. 9.
    Ono, A., E. Westein, S. Hsiao, W. S. Nesbitt, J. R. Hamilton, S. M. Schoenwaelder, and S. P. Jackson. Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth. Blood 112:90–99, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    OpenCFD Limited 2010, OpenCFD Limited, Reading. http://www.openfoam.com. Accessed 22 Nov 2010.
  11. 11.
    Papanastasiou, T., G. Georgiou, and A. Alexandrou. Viscous Fluid Flow. Boca Raton: CRC, 2000.Google Scholar
  12. 12.
    Ross, R., and J. A. Glomset. Pathogenesis of atherosclerosis. N. Engl. J. Med. 295:369–377, 1976.PubMedCrossRefGoogle Scholar
  13. 13.
    Ruggeri, Z. M. Platelets in atherothrombosis. Nat. Med. 8:1227–1234, 2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Ruggeri, Z. M. The role of von willebrand factor in thrombus formation. Thromb. Res. 120:S5–S9, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Ruggeri, Z. M., and G. L. Mendolicchio. Adhesion mechanisms in platelet function. Circ. Res. 100:1673–1685, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Savage, B., F. Almus-Jacobs, and Z. M. Ruggeri. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell 94:657–666, 1998.PubMedCrossRefGoogle Scholar
  17. 17.
    Versteeg, H. K., and W. Malalaekera. Computational Fluid Dynamics. London: Longman Group, 1995.Google Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Elham Tolouei
    • 1
    • 2
  • Christopher J. Butler
    • 1
  • Andreas Fouras
    • 1
    • 2
  • Kris Ryan
    • 1
  • Gregory J. Sheard
    • 1
  • Josie Carberry
    • 1
  1. 1.Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourneAustralia
  2. 2.Division of Biological Engineering, Faculty of EngineeringMonash UniversityMelbourneAustralia

Personalised recommendations