Annals of Biomedical Engineering

, Volume 39, Issue 5, pp 1505–1516

Quantifying the Roles of Tidal Volume and PEEP in the Pathogenesis of Ventilator-Induced Lung Injury

  • Adrian S. Seah
  • Kara A. Grant
  • Minara Aliyeva
  • Gilman B. Allen
  • Jason H. T. Bates
Article

Abstract

Management of patients with acute lung injury (ALI) rests on achieving a balance between the gas exchanging benefits of mechanical ventilation and the exacerbation of tissue damage in the form of ventilator-induced lung injury (VILI). Optimizing this balance requires an injury cost function relating injury progression to the measurable pressures, flows, and volumes delivered during mechanical ventilation. With this in mind, we mechanically ventilated naive, anesthetized, paralyzed mice for 4 h using either a low or high tidal volume (Vt) with either moderate or zero positive end-expiratory pressure (PEEP). The derecruitability of the lung was assessed every 15 min in terms of the degree of increase in lung elastance occurring over 3 min following a recruitment maneuver. Mice could be safely ventilated for 4 h with either a high Vt or zero PEEP, but when both conditions were applied simultaneously the lung became increasingly unstable, demonstrating worsening injury. We were able to mimic these data using a computational model of dynamic recruitment and derecruitment that simulates the effects of progressively increasing surface tension at the air–liquid interface, suggesting that the VILI in our animal model progressed via a vicious cycle of alveolar leak, degradation of surfactant function, and increasing tissue stress. We thus propose that the task of ventilating the injured lung is usefully understood in terms of the Vt–PEEP plane. Within this plane, non-injurious combinations of Vt and PEEP lie within a “safe region”, the boundaries of which shrink as VILI develops.

Keywords

Acute lung injury/ARDS Lung derecruitment Mechanical ventilation Mouse model Computational model 

References

  1. 1.
    Albert, S. P., J. DiRocco, G. B. Allen, J. H. T. Bates, R. Lafollette, B. D. Kubiak, J. Fischer, S. Maroney, and G. F. Nieman. The role of time and pressure on alveolar recruitment. J. Appl. Physiol. 106:757–765, 2009.PubMedCrossRefGoogle Scholar
  2. 2.
    Allen, G. B., L. K. Lundblad, P. Parsons, and J. H. T. Bates. Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93:1709–1715, 2002.PubMedGoogle Scholar
  3. 3.
    Allen, G. B., L. A. Pavone, J. D. DiRocco, J. H. T. Bates, and G. F. Nieman. Pulmonary impedance and alveolar instability during injurious ventilation in rats. J. Appl. Physiol. 99:723–730, 2005.PubMedCrossRefGoogle Scholar
  4. 4.
    Allen, G. B., T. Leclair, M. Cloutier, J. Thompson-Figueroa, and J. H. T. Bates. The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration. Am. J. Physiol. 292:L1580–L1589, 2007.Google Scholar
  5. 5.
    Amato, M. B., C. S. Barbas, D. M. Medeiros, P. Schettino Gde, G. Lorenzi Filho, R. A. Kairalla, D. Deheinzelin, C. Morais, O. Fernandes Ede, T. Y. Takagaki, et al. Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am. J. Respir. Crit. Care Med. 152:1835–1846, 1995.PubMedGoogle Scholar
  6. 6.
    ARDSnet. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:1301–1308, 2000.CrossRefGoogle Scholar
  7. 7.
    Bates, J. H. T., and C. G. Irvin. Time dependence of recruitment and derecruitment in the lung: a theoretical model. J. Appl. Physiol. 93:705–713, 2002.PubMedGoogle Scholar
  8. 8.
    Brower, R. G., P. N. Lanken, N. MacIntyre, M. A. Matthay, A. Morris, M. Ancukiewicz, D. Schoenfeld, and B. T. Thompson. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 351:327–336, 2004.PubMedCrossRefGoogle Scholar
  9. 9.
    Dailey, H. L., L. M. Ricles, H. C. Yalcin, and S. N. Ghadiali. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening. J. Appl. Physiol. 106:221–232, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Dreyfuss, D., P. Soler, G. Basset, and G. Saumon. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am. Rev. Respir. Dis. 137:1159–1164, 1988.PubMedGoogle Scholar
  11. 11.
    Frank, J. A., J. A. Gutierrez, K. D. Jones, L. Allen, L. Dobbs, and M. A. Matthay. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am. J. Respir. Crit. Care Med. 165:242–249, 2002.PubMedGoogle Scholar
  12. 12.
    Gajic, O., J. Lee, C. H. Doerr, J. C. Berrios, J. L. Myers, and R. D. Hubmayr. Ventilator-induced cell wounding and repair in the intact lung. Am. J. Respir. Crit. Care Med. 167:1057–1063, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Gajic, O., B. Afessa, B. T. Thompson, F. Frutos-Vivar, M. Malinchoc, G. D. Rubenfeld, A. Esteban, A. Anzueto, and R. D. Hubmayr. Prediction of death and prolonged mechanical ventilation in acute lung injury. Crit. Care 11:R53, 2007.PubMedCrossRefGoogle Scholar
  14. 14.
    Halter, J. M., J. M. Steinberg, L. A. Gatto, J. D. DiRocco, L. A. Pavone, H. J. Schiller, S. Albert, H. M. Lee, D. Carney, and G. F. Nieman. Effect of positive end-expiratory pressure and tidal volume on lung injury induced by alveolar instability. Crit. Care 11:R20, 2007.PubMedCrossRefGoogle Scholar
  15. 15.
    Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:168–178, 1992.PubMedCrossRefGoogle Scholar
  16. 16.
    Kobayashi, T., K. Nitta, M. Ganzuka, S. Inui, G. Grossmann, and B. Robertson. Inactivation of exogenous surfactant by pulmonary edema fluid. Pediatr. Res. 29:353–356, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Massa, C. B., G. B. Allen, and J. H. T. Bates. Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. J. Appl. Physiol. 105:1813–1821, 2008.PubMedCrossRefGoogle Scholar
  18. 18.
    McCourtie, A. S., H. E. Merry, A. S. Farivar, C. H. Goss, and M. S. Mulligan. Alveolar macrophage secretory products augment the response of rat pulmonary artery endothelial cells to hypoxia and reoxygenation. Ann. Thorac. Surg. 85:1056–1060, 2008.PubMedCrossRefGoogle Scholar
  19. 19.
    Meade, M. O., D. J. Cook, G. H. Guyatt, A. S. Slutsky, Y. M. Arabi, D. J. Cooper, A. R. Davies, L. E. Hand, Q. Zhou, L. Thabane, P. Austin, S. Lapinsky, A. Baxter, J. Russell, Y. Skrobik, J. J. Ronco, and T. E. Stewart. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645, 2008.PubMedCrossRefGoogle Scholar
  20. 20.
    Mercat, A., J. C. Richard, B. Vielle, S. Jaber, D. Osman, J. L. Diehl, J. Y. Lefrant, G. Prat, J. Richecoeur, A. Nieszkowska, C. Gervais, J. Baudot, L. Bouadma, and L. Brochard. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655, 2008.PubMedCrossRefGoogle Scholar
  21. 21.
    Papazian, L., J. M. Forel, A. Gacouin, C. Penot-Ragon, G. Perrin, A. Loundou, S. Jaber, J. M. Arnal, D. Perez, J. M. Seghboyan, J. M. Constantin, P. Courant, J. Y. Lefrant, C. Guerin, G. Prat, S. Morange, and A. Roch. Neuromuscular blockers in early acute respiratory distress syndrome. N. Engl. J. Med. 363:1107–1116, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Perun, M. L., and D. P. Gaver, 3rd. An experimental model investigation of the opening of a collapsed untethered pulmonary airway. J. Biomech. Eng. 117:245–253, 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    Perun, M. L., and D. P. Gaver, 3rd. Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening. J. Appl. Physiol. 79:1717–1728, 1995.PubMedGoogle Scholar
  24. 24.
    Rubenfeld, G. D., E. Caldwell, E. Peabody, J. Weaver, D. P. Martin, M. Neff, E. J. Stern, and L. D. Hudson. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353:1685–1693, 2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Schuessler, T. F., and J. H. T. Bates. A computer-controlled research ventilator for small animals: design and evaluation. IEEE Trans. Biomed. Eng. 42:860–866, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Slutsky, A. S. Lung injury caused by mechanical ventilation. Chest 116:9S–15S, 1999.PubMedCrossRefGoogle Scholar
  27. 27.
    Slutsky, A. S. Ventilator-induced lung injury: from barotrauma to biotrauma. Respir. Care 50:646–659, 2005.PubMedGoogle Scholar
  28. 28.
    Stapleton, R. D., B. M. Wang, L. D. Hudson, G. D. Rubenfeld, E. S. Caldwell, and K. P. Steinberg. Causes and timing of death in patients with ARDS. Chest 128:525–532, 2005.PubMedCrossRefGoogle Scholar
  29. 29.
    Tremblay, L. N., and A. S. Slutsky. Ventilator-induced injury: from barotrauma to biotrauma. Proc. Assoc. Am. Physicians 110:482–488, 1998.PubMedGoogle Scholar
  30. 30.
    Tremblay, L. N., and A. S. Slutsky. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 32:24–33, 2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Webb, H. H., and D. F. Tierney. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am. Rev. Respir. Dis. 110:556–565, 1974.PubMedGoogle Scholar
  32. 32.
    Yalcin, H. C., S. F. Perry, and S. N. Ghadiali. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening. J. Appl. Physiol. 103:1796–1807, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Adrian S. Seah
    • 1
  • Kara A. Grant
    • 2
  • Minara Aliyeva
    • 2
  • Gilman B. Allen
    • 2
  • Jason H. T. Bates
    • 2
  1. 1.Department of SurgeryFletcher Allen Health CareBurlingtonUSA
  2. 2.Vermont Lung CenterUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations