Advertisement

Annals of Biomedical Engineering

, Volume 39, Issue 3, pp 1041–1050 | Cite as

Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems

  • David J. Quinn
  • Igor Pivkin
  • Sophie Y. Wong
  • Keng-Hwee Chiam
  • Ming Dao
  • George Em KarniadakisEmail author
  • Subra Suresh
Article

Abstract

We investigate the biophysical characteristics of healthy human red blood cells (RBCs) traversing microfluidic channels with cross-sectional areas as small as 2.7 × 3 μm. We combine single RBC optical tweezers and flow experiments with corresponding simulations based on dissipative particle dynamics (DPD), and upon validation of the DPD model, predictive simulations and companion experiments are performed in order to quantify cell deformation and pressure–velocity relationships for different channel sizes and physiologically relevant temperatures. We discuss conditions associated with the shape transitions of RBCs along with the relative effects of membrane and cytosol viscosity, plasma environments, and geometry on flow through microfluidic systems at physiological temperatures. In particular, we identify a cross-sectional area threshold below which the RBC membrane properties begin to dominate its flow behavior at room temperature; at physiological temperatures this effect is less profound.

Keywords

Erythrocyte Deformability Temperature-dependent rheology 

Notes

Acknowledgments

This work was done as a part of the interdisciplinary research group on Infectious Diseases which is supported by the Singapore MIT Alliance for Research and Technology (SMART) and was also partially supported by NIH/NHLBI award number R01HL094270. This work made use of MRSEC Shared Facilities supported by the National Science Foundation under Award Number DMR-0213282. Simulations were performed using the NSF NICS supercomputing center.

Supplementary material

10439_2010_232_MOESM1_ESM.pdf (202 kb)
PDF (202 KB)

References

  1. 1.
    Abkarian, M., M. Faivre, and H. A. Stone. High-speed microfluidic differential manometer for cellular-scale hydrodynamics. Proc. Natl. Acad. Sci. USA 103:538–542, 2006.CrossRefPubMedGoogle Scholar
  2. 2.
    Antia, M., T. Herricks, and P. K. Rathod. Microfluidic modeling of cell–cell interactions in malaria pathogenesis. PLoS Pathog. 3:939–948, 2007.CrossRefGoogle Scholar
  3. 3.
    Bagchi, P., P. C. Johnson, and A. S. Popel. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. Trans. ASME 127:1070–1080, 2005.CrossRefGoogle Scholar
  4. 4.
    Boey, S. K., D. H. Boal, and D. E. Discher. Simulations of the erythrocyte cytoskeleton at large deformation. i. microscopic models. Biophys. J. 75:1573–1583, 1998.CrossRefPubMedGoogle Scholar
  5. 5.
    Canham, P. B., and A. C. Burton. Distribution of size and shape in populations of normal human red cells. Circul Res. 22:405–422, 1968.Google Scholar
  6. 6.
    Chien, S. Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49:177–192, 1987.CrossRefPubMedGoogle Scholar
  7. 7.
    Danker, G., P. M. Vlahovska, and C. Misbah. Vesicles in Poiseuille flow. Phys. Rev. Lett. 102:148102, 2009.CrossRefPubMedGoogle Scholar
  8. 8.
    Evans, E. A., and R. M. Hochmuth. Membrane viscoelasticity. Biophys. J. 16:1–11, 1976.CrossRefPubMedGoogle Scholar
  9. 9.
    Fedosov, D., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology and dynamics. Biophys. J. 98:2215–2225, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Frank, R. S., and R. M. Hochmuth. The influence of red cell mechanical properties on flow through single capillary-sized pores. J. Biomech. Eng. Trans. ASME 110:155–160, 1988.CrossRefGoogle Scholar
  11. 11.
    Groot, R. D., and P. B. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–4435, 1997.CrossRefGoogle Scholar
  12. 12.
    Herrmann, A., and P. M. Müller. Correlation of the internal microviscosity of human erythrocytes to the cell volume and the viscosity of hemoglobin solutions. Biochim. Biophys. Acta 885:80–87, 1986.CrossRefPubMedGoogle Scholar
  13. 13.
    Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl. Acad. Sci. USA 104:20496–20500, 2007.CrossRefPubMedGoogle Scholar
  14. 14.
    Hochmuth, R. M., R. N. Marple, and S. P. Sutera. Capillary blood flow. I. erythrocyte deformation in glass capillaries. Microvasc. Res. 2:409–419, 1970.CrossRefPubMedGoogle Scholar
  15. 15.
    McWhirter, J. L., H. Noguchi, and G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl. Acad. Sci. USA 106:6039–6043, 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    Mills, J. P., M. Diez-Silva, D. J. Quinn, M. Dao, M. Lang, K. S. Tan, C. T. Lim, G. Milon, P. H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh. Effect of plasmodial resa protein on deformability of human red blood cells harboring plasmodium falciparum. Proc. Natl. Acad. Sci. USA 104:9213–9217, 2007.CrossRefPubMedGoogle Scholar
  17. 17.
    Mills, J. P., L. Qie, M. Dao, C. T. Lim, and S. Suresh. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. MCB 1:169–180, 2004.PubMedGoogle Scholar
  18. 18.
    Mohandas, N., and E. Evans. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23:787–818, 1994.CrossRefPubMedGoogle Scholar
  19. 19.
    Noguchi, H., and G. Gompper. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl. Acad. Sci. USA 102:14159–14164, 2005.CrossRefPubMedGoogle Scholar
  20. 20.
    Park, Y., M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum. Proc. Natl. Acad. Sci. USA 105:13730–13735, 2008.CrossRefPubMedGoogle Scholar
  21. 21.
    Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.CrossRefPubMedGoogle Scholar
  22. 22.
    Popel, A., and P. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid. Mech. 37:43–69, 2005.CrossRefPubMedGoogle Scholar
  23. 23.
    Pozrikidis, C. Numerical simulation of blood flow through microvascular capillary networks. Bull. Math. Biol. 71:1520–1541, 2009.CrossRefPubMedGoogle Scholar
  24. 24.
    Secomb, T. W., and R. Hsu. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties. Biophys. J. 71:1095–1101, 1996.CrossRefPubMedGoogle Scholar
  25. 25.
    Shevkoplyas, S., T. Yoshida, S. Gifford, and M. Bitensky. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device. Lab Chip 6:914–920, 2006.CrossRefPubMedGoogle Scholar
  26. 26.
    Suresh, S., J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1:15–30, 2005.CrossRefPubMedGoogle Scholar
  27. 27.
    Sutton, N., M. C. Tracey, I. D. Johnston, R. S. Greenaway, and M. W. Rampling. A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries. Microvasc. Res. 53:272–281, 1997.CrossRefPubMedGoogle Scholar
  28. 28.
    Waugh, R., and E. A. Evans. Thermoelasticity of red blood cell membrane. Biophys. J. 26:115–131, 1979.CrossRefPubMedGoogle Scholar
  29. 29.
    Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • David J. Quinn
    • 1
  • Igor Pivkin
    • 2
  • Sophie Y. Wong
    • 3
  • Keng-Hwee Chiam
    • 4
  • Ming Dao
    • 2
  • George Em Karniadakis
    • 5
    Email author
  • Subra Suresh
    • 2
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.A*STAR Institute of High Performance Computing (IHPC)SingaporeSingapore
  5. 5.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations