Annals of Biomedical Engineering

, Volume 39, Issue 2, pp 688–697 | Cite as

Examining the Role of Mechanosensitive Ion Channels in Pressure Mechanotransduction in Rat Bladder Urothelial Cells

  • Shawn M. Olsen
  • Joshua D. Stover
  • Jiro Nagatomi


Until recently, the bladder urothelium had been thought of only as a physical barrier between urine and underlying bladder tissue. Recent studies, however, have demonstrated that the urothelium is sensitive to mechanical stimuli and responds by releasing signaling molecules (NO, ATP). This study sought to investigate the role of select ion channels in urothelial cell (UC) pressure mechanotransduction. Using a custom-made pressure chamber, rat bladder UCs cultured on tissue culture plastic dishes were exposed to sustained hydrostatic pressure (5–20 cmH2O) for up to 30 min. When compared to the control, UCs exposed to 10 cmH2O (5 min), and 15 cmH2O (5 and 15 min), exhibited a significant (p < 0.05) increase in ATP release. In the absence of extracellular calcium, ATP release due to hydrostatic pressure was attenuated. Blocking the L-type voltage-gated channel with nifedipine during pressure exposure did not affect ATP release. However, blocking TRP channels, stretch-activated channels (SACs), and the epithelial sodium channel (ENaC) with ruthenium red, gadolinium chloride, and amiloride, respectively, all abolished hydrostatic pressure-evoked ATP release. These results have provided evidence for the first time that cultured UCs are sensitive to hydrostatic pressure in the physiologically relevant range. The results of this study also provide evidence that one or multiple mechanosensitive ion channels play a role in the mechanotransduction of hydrostatic pressure, which supports the view that not only tissue stretch or tension, but also pressure is an important parameter for mechanosensing of bladder fullness.


Urothelium Pressure ATP release Ion channel 



The authors wish to thank Dr. Bruce Gao and his laboratory for the rat bladders used as a source of UCs in this study. This research was funded in part by NIH Grant P20RR021949. S.M.O. and J.D.S. were supported by the Department of Bioengineering, Clemson University.


  1. 1.
    Apodaca, G. The uroepithelium: not just a passive barrier. Traffic 5:117–128, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Araki, I., S. Du, H. Kobayashi, N. Sawada, T. Mochizuki, et al. Roles of mechanosensitive ion channels in bladder sensory transduction and overactive bladder. Int. J. Urol. 15:681–687, 2008.CrossRefPubMedGoogle Scholar
  3. 3.
    Barrick, S., H. Lee, S. Meyers, M. Caterina, M. Zeidel, et al. Receptors and channels: TRPV4 receptors in urinary bladder urothelium: involvement in urinary bladder function. J. Pain 5:S10, 2004.CrossRefGoogle Scholar
  4. 4.
    Birder, L. A. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vasc. Pharmacol. 45:221–226, 2006.CrossRefGoogle Scholar
  5. 5.
    Birder, L. A., S. R. Barrick, J. R. Roppolo, A. J. Kanai, W. C. de Groat, et al. Feline interstitial cystitis results in mechanical hypersensitivity and altered ATP release from bladder urothelium. Am. J. Physiol. Renal. Physiol. 285:F423–F429, 2003.PubMedGoogle Scholar
  6. 6.
    Birder, L., F. A. Kullmann, H. Lee, S. Barrick, W. de Groat, et al. Activation of urothelial transient receptor potential vanilloid 4 by 4{alpha}-phorbol 12, 13-didecanoate contributes to altered bladder reflexes in the rat. J. Pharmacol. Exp. Ther. 323:227–235, 2007.CrossRefPubMedGoogle Scholar
  7. 7.
    Birder, L. A., M. L. Nealen, S. Kiss, W. C. de Groat, M. J. Caterina, et al. Beta-adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J. Neurosci. 22:8063–8070, 2002.PubMedGoogle Scholar
  8. 8.
    Birder, L. A., et al. Altered urinary bladder function in mice lacking the vanilloid receptor. Nat. Neurosci. 5:856–860, 2002.CrossRefPubMedGoogle Scholar
  9. 9.
    Caterina, M. J. Ion channels and thermotransduction. In: Transduction Channels in Sensory Cells, edited by S. Frings, and J. Bradley. Weinheim: Wiley-VCH, 2004, pp. 235–249.CrossRefGoogle Scholar
  10. 10.
    Caterina, M. J., A. Leffler, A. B. Malmberg, W. J. Martin, J. Trafton, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313, 2000.CrossRefPubMedGoogle Scholar
  11. 11.
    Chopra, B., S. R. Barrick, S. Meyers, J. M. Beckel, M. L. Zeidel, et al. Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium. J. Physiol. 562:859–871, 2005.CrossRefPubMedGoogle Scholar
  12. 12.
    Daneshgari, F., X. Huang, G. Liu, J. Bena, L. Saffore, and C. T. Powell. Temporal differences in bladder dysfunction caused by diabetes, diuresis, and treated diabetes in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R1728–R1735, 2006.PubMedGoogle Scholar
  13. 13.
    de Groat, W. C. A neurologic basis for the overactive bladder. Urology 50:36–52, 1997 (discussion 3–6).CrossRefPubMedGoogle Scholar
  14. 14.
    Du, S., I. Araki, Y. Mikami, H. Zakoji, M. Beppu, et al. Amiloride-sensitive ion channels in urinary bladder epithelium involved in mechanosensory transduction by modulating stretch-evoked adenosine triphosphate release. Urology 69:590–595, 2007.CrossRefPubMedGoogle Scholar
  15. 15.
    Ethier, C. R., and C. A. Simmons. Introductory Biomechanics. Cambridge, UK: Cambridge University Press, 2007.Google Scholar
  16. 16.
    Ferguson, D., et al. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J. Physiol. 505:503–511, 1997.CrossRefPubMedGoogle Scholar
  17. 17.
    Gevaert, T., J. Vandepitte, D. Ost, B. Nilius, and D. De Ridder. Autonomous contractile activity in the isolated rat bladder is modulated by a TRPV1 dependent mechanism. Neurourol. Urodyn. 26:424–432, 2007 (discussion 51–53).CrossRefPubMedGoogle Scholar
  18. 18.
    Hamill, O. P. Twenty odd years of stretch-sensitive channels. Pflugers Arch. 453:333–351, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    Hosoki, E., and T. Iijima. Chloride-sensitive Ca2+ entry by histamine and ATP in human aortic endothelial cells. Eur. J. Pharmacol. 266:213–218, 1994.CrossRefPubMedGoogle Scholar
  20. 20.
    Hosoki, E., and T. Iijima. Modulation of cytosolic Ca2+ concentration by thapsigargin and cyclopiazonic acid in human aortic endothelial cells. Eur. J. Pharmacol. 288:131–137, 1995.CrossRefPubMedGoogle Scholar
  21. 21.
    Inoue, R., T. Okada, H. Onoue, Y. Hara, S. Shimizu, et al. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ. Res. 88:325–332, 2001.PubMedGoogle Scholar
  22. 22.
    Kurzrock, E. A., D. K. Lieu, L. A. de Graffenried, and R. R. Isseroff. Rat urothelium: improved techniques for serial cultivation, expansion, freezing and reconstitution onto acellular matrix. J. Urol. 173:281–285, 2005.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee, H. Y., M. Bardini, and G. Burnstock. Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J. Urol. 163:2002–2007, 2000.CrossRefPubMedGoogle Scholar
  24. 24.
    Lewis, S. A. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am. J. Physiol. Renal. Physiol. 278:F867–F874, 2000.PubMedGoogle Scholar
  25. 25.
    Lindstrom, S., and L. Mazieres. Effect of menthol on the bladder cooling reflex in the cat. Acta Physiol. Scand. 141:1–10, 1991.CrossRefPubMedGoogle Scholar
  26. 26.
    Matsumoto-Miyai, K., A. Kagase, Y. Murakawa, Y. Momota, and M. Kawatani. Extracellular Ca2+ regulates the stimulus-elicited ATP release from urothelium. Auton. Neurosci. 150:94–99, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    McCleskey, E. W., and M. S. Gold. Ion channels of nociception. Annu. Rev. Physiol. 61:835–856, 1999.CrossRefPubMedGoogle Scholar
  28. 28.
    Mochizuki, T., T. Sokabe, I. Araki, K. Fujishita, K. Shibasaki, et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J. Biol. Chem. 284:21257–21264, 2009.CrossRefPubMedGoogle Scholar
  29. 29.
    Myers, K. A., J. B. Rattner, N. G. Shrive, and D. A. Hart. Hydrostatic pressure sensation in cells: integration into the tensegrity model. Biochem. Cell Biol.—Biochimie Et Biologie Cellulaire 85:543–551, 2007.CrossRefGoogle Scholar
  30. 30.
    Nakada, Y., O. Yokoyama, K. Komatsu, K. Kodama, S. Yotsuyanagi, et al. Effects of aniracetam on bladder overactivity in rats with cerebral infarction. J. Pharmacol. Exp. Ther. 293:921–928, 2000.PubMedGoogle Scholar
  31. 31.
    O’Connor, Jr., L. T., E. D. Vaughan, Jr., and D. Felsen. In vivo cystometric evaluation of progressive bladder outlet obstruction in rats. J. Urol. 158:631–635, 1997.CrossRefPubMedGoogle Scholar
  32. 32.
    Petersen, C. C., M. J. Berridge, M. F. Borgese, and D. L. Bennett. Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem. J. 311(Pt 1):41–44, 1995.PubMedGoogle Scholar
  33. 33.
    Rabbany, S. Y., J. T. Funai, and A. Noordergraaf. Pressure generation in a contracting myocyte. Heart Vessels 9:169–174, 1994.CrossRefPubMedGoogle Scholar
  34. 34.
    Rapp, D. E., M. B. Lyon, G. T. Bales, and S. P. Cook. A role for the P2X receptor in urinary tract physiology and in the pathophysiology of urinary dysfunction. Eur. Urol. 48:303–308, 2005.CrossRefPubMedGoogle Scholar
  35. 35.
    Sigurdson, W., A. Ruknudin, and F. Sachs. Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am. J. Physiol. 262:H1110–H1115, 1992.PubMedGoogle Scholar
  36. 36.
    Stein, R. J., S. Santos, J. Nagatomi, Y. Hayashi, B. S. Minnery, et al. Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J. Urol. 172:1175–1178, 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    Stover, J., and J. Nagatomi. Cyclic pressure stimulates DNA synthesis through the PI3K/Akt signaling pathway in rat bladder smooth muscle cells. Ann. Biomed. Eng. 35:1585–1594, 2007.CrossRefPubMedGoogle Scholar
  38. 38.
    Suzuki, M., A. Mizuno, K. Kodaira, and M. Imai. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278:22664–22668, 2003.CrossRefPubMedGoogle Scholar
  39. 39.
    Vlaskovska, M., L. Kasakov, W. Rong, P. Bodin, M. Bardini, et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J. Neurosci. 21:5670–5677, 2001.PubMedGoogle Scholar
  40. 40.
    Wang, E. C. Y., J.-M. Lee, J. P. Johnson, T. R. Kleyman, R. Bridges, and G. Apodaca. Hydrostatic pressure-regulated ion transport in bladder uroepithelium. Am. J. Physiol. Renal. Physiol. 285:F651–F663, 2003.PubMedGoogle Scholar
  41. 41.
    Yu, W., P. Khandelwal, and G. Apodaca. Distinct apical and basolateral membrane requirements for stretch-induced membrane traffic at the apical surface of bladder umbrella cells. Mol. Biol. Cell 20:282–295, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Shawn M. Olsen
    • 1
  • Joshua D. Stover
    • 1
  • Jiro Nagatomi
    • 1
  1. 1.Department of Bioengineering, 301 Rhodes Engineering Research CenterClemson UniversityClemsonUSA

Personalised recommendations