Annals of Biomedical Engineering

, Volume 39, Issue 2, pp 864–883 | Cite as

Quantification of Particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics

  • Ga-Young Suh
  • Andrea S. Les
  • Adam S. Tenforde
  • Shawn C. Shadden
  • Ryan L. Spilker
  • Janice J. Yeung
  • Christopher P. Cheng
  • Robert J. Herfkens
  • Ronald L. Dalman
  • Charles A. Taylor


Hemodynamic conditions are hypothesized to affect the initiation, growth, and rupture of abdominal aortic aneurysms (AAAs), a vascular disease characterized by progressive wall degradation and enlargement of the abdominal aorta. This study aims to use magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to quantify flow stagnation and recirculation in eight AAAs by computing particle residence time (PRT). Specifically, we used gadolinium-enhanced MR angiography to obtain images of the vessel lumens, which were used to generate subject-specific models. We also used phase-contrast MRI to measure blood flow at supraceliac and infrarenal locations to prescribe physiologic boundary conditions. CFD was used to simulate pulsatile flow, and PRT, particle residence index, and particle half-life of PRT in the aneurysms were computed. We observed significant regional differences of PRT in the aneurysms with localized patterns that differed depending on aneurysm geometry and infrarenal flow. A bulbous aneurysm with the lowest mean infrarenal flow demonstrated the slowest particle clearance. In addition, improvements in particle clearance were observed with increase of mean infrarenal flow. We postulate that augmentation of mean infrarenal flow during exercise may reduce chronic flow stasis that may influence mural thrombus burden, degradation of the vessel wall, and aneurysm growth.


Hemodynamics Pulsatile flow simulation Particle clearance Flow stagnation Flow waveforms Aneurysm geometry Subject-specific 



Abdominal aortic aneurysm


Anterior to posterior




Left to right


Magnetic resonance imaging


Particle residence index


Particle residence time


Resistance (proximal)–Capacitance–Resistance (distal)





This research was supported by the National Institutes of Health (P50 HL083800, P41 RR09784), the Lucas Center for Magnetic Resonance Imaging, and NSF (CNS-0619926) for computer resources. Allen Chiou, Victoria Yeh, Yash Narang, and Bartlomiej R. Imielski provided assistance with imaging and modeling. Nan Xiao provided help with quantification of PRT data. We thank all research subjects for their participation.


  1. 1.
    Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J. Biomech. Eng. 118:280–286, 1996.CrossRefPubMedGoogle Scholar
  2. 2.
    Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann. Biomed. Eng. 25(2):344–356, 1997.CrossRefPubMedGoogle Scholar
  3. 3.
    Butty, V. D., K. Gudjonsson, P. Buchel, V. B. Makhijani, Y. Ventikos, and D. Poulikakos. Residence times and basins of attraction for a realistic right internal carotid artery with two aneurysms. Biorheology 29:387–393, 2002.Google Scholar
  4. 4.
    Cao, J., and S. E. Rittgers. Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries. Ann. Biomed. Eng. 26:190–199, 1998.CrossRefPubMedGoogle Scholar
  5. 5.
    Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 168:323–331, 2003.CrossRefPubMedGoogle Scholar
  6. 6.
    Dalman, R. L., M. M. Tedesco, J. Myers, and C. A. Taylor. AAA disease: mechanism, stratification, and treatment. Ann. N. Y. Acad. Sci. 1085:92–109, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Egelhoff, C. J., R. S. Budwig, D. F. Elger, T. A. Khraishi, and K. H. Johansen. Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. J. Biomech. 32:1319–1329, 1999.CrossRefPubMedGoogle Scholar
  8. 8.
    Fallon, A. M., U. M. Marzec, S. R. Hanson, and A. P. Yoganathan. Thrombin formation in vitro in response to shear-induced activation of platelets. Thromb. Res. 121(3):397–406, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    Fillinger, M. F., J. Racusin, R. K. Baker, J. L. Cronenwett, A. Teutelink, M. L. Schermerhorn, R. M. Zwolak, R. J. Powell, D. B. Walsh, and E. M. Rzucidlo. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J. Vasc. Surg. 39:1243–1252, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Finol, E. A., K. Keyhani, and C. H. Amon. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions. J. Biomech. Eng. 125:207–217, 2003.CrossRefPubMedGoogle Scholar
  11. 11.
    Fogelson, A. L. Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J. Appl. Math. 52:1089–1110, 1992.CrossRefGoogle Scholar
  12. 12.
    Folie, B. J., and L. V. McIntire. Mathematical analysis of mural thrombogenesis: concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys. J. 56:1121–1141, 1989.CrossRefPubMedGoogle Scholar
  13. 13.
    Fontaine, V., M. P. Jacob, X. Houard, P. Rossignol, D. Plissonnier, E. Angles-Cano, and J. B. Michel. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am. J. Pathol. 161:1701–1710, 2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Gear, A. R. L. Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events. Can. J. Physiol. Pharmacol. 72:285–294, 1994.PubMedGoogle Scholar
  15. 15.
    Gillum, R. F. Epidemiology of aortic aneurysm in the United States. J. Clin. Epidemiol. 48:1289–1298, 1995.CrossRefPubMedGoogle Scholar
  16. 16.
    Glagov, S., C. K. Zarins, D. G. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112:1018–1031, 1988.PubMedGoogle Scholar
  17. 17.
    Golledge, J., P. S. Tsao, R. L. Dalman, and P. E. Norman. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation 118:2382–2392, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Jesty, J., W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14(3):143–149, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Karino, T., and H. L. Goldsmith. Aggregation of human platelets in an annular vortex distal to a tubular expansion. Microvasc. Res. 17:217–237, 1979.CrossRefPubMedGoogle Scholar
  20. 20.
    Karino, T., and H. L. Goldsmith. Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc. Res. 17:238–262, 1979.CrossRefPubMedGoogle Scholar
  21. 21.
    Khanafer, K. M., P. Gadhoke, R. Berguer, and J. L. Bull. Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood. Biorheology 43:661–679, 2006.PubMedGoogle Scholar
  22. 22.
    Kim, H. J., C. A. Figueroa, T. J. Hughes, K. C. Jansen, and C. A. Taylor. Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. 198:3551–3566, 2009.CrossRefGoogle Scholar
  23. 23.
    Kunov, M. J., D. A. Steinman, and C. R. Ethier. Particle volumetric residence time calculation in arterial geometries. J. Biomech. Eng. 118:158–164, 1996.CrossRefPubMedGoogle Scholar
  24. 24.
    Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38:1288–1313, 2010.CrossRefPubMedGoogle Scholar
  25. 25.
    Les, A. S., J. J. Yeung, G. M. Schultz, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Supraceliac and infrarenal aortic flow in patients with abdominal aortic aneurysms: mean flows, waveforms, and allometric scaling relationships. Cardiovasc. Eng. Technol. 1:39–51, 2010.CrossRefGoogle Scholar
  26. 26.
    Leuprecht, A., and K. Perktold. Computer simulation of non-Newtonian effects on blood flow in large arteries. Comput. Methods Biomech. Biomed. Eng. 4:149–163, 2001.CrossRefGoogle Scholar
  27. 27.
    McPhee, J. T., J. S. Hill, and M. H. Eslami. The impact of gender on presentation, therapy and mortality of abdominal aortic aneurysm in the United States, 2001–2004. J. Vasc. Surg. 45:891–899, 2007.CrossRefPubMedGoogle Scholar
  28. 28.
    Moore, Jr., J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 116:337–346, 1994.CrossRefPubMedGoogle Scholar
  29. 29.
    Perktold, K. On the paths of fluid particles in an axisymmetrical aneurysm. J. Biomech. 20:311–317, 1987.CrossRefPubMedGoogle Scholar
  30. 30.
    Raines, J. K., M. Y. Jaffrin, and A. H. Shapiro. A computer simulation of arterial dynamics in the human leg. J. Biomech. 7:77–91, 1974.CrossRefPubMedGoogle Scholar
  31. 31.
    Satta, J., E. Laara, and T. Juvonen. Intraluminal thrombus predicts rupture of an abdominal aortic aneurysm. J. Vasc. Surg. 23:737–739, 1996.CrossRefPubMedGoogle Scholar
  32. 32.
    Spilker, R. L., and C. A. Taylor. Tuning multiscale hemodynamic simulations to match physiological measurements. Ann. Biomed. Eng. 38:2635–2648, 2010.CrossRefPubMedGoogle Scholar
  33. 33.
    Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.CrossRefPubMedGoogle Scholar
  34. 34.
    Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38:1188–1203, 2010.CrossRefPubMedGoogle Scholar
  35. 35.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Effect of exercise on hemodynamic conditions in the abdominal aorta. J. Vasc. Surg. 29:1077–1089, 1999.CrossRefPubMedGoogle Scholar
  36. 36.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158:155–196, 1998.CrossRefGoogle Scholar
  37. 37.
    Tenforde, A. S., C. P. Cheng, G. Suh, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantifying in vivo hemodynamic response to exercise in patients with intermittent claudication and abdominal aortic aneurysms using cine phase-contrast MRI. J. Magn. Reson. Imaging 31:425–429, 2010.CrossRefPubMedGoogle Scholar
  38. 38.
    Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jensen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796, 2006.CrossRefGoogle Scholar
  39. 39.
    Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jensen, and C. A. Taylor. Outflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Meth. Biomech. Eng., 2010. doi: 10.1080/10255840903413565.
  40. 40.
    Vollmar, J. F., E. Paes, P. Pauschinger, E. Hense, and A. Friesch. Aortic aneurysms as late sequelae of above-knee amputation. Lancet 2:834–835, 1989.CrossRefPubMedGoogle Scholar
  41. 41.
    Whiting, C. H., and K. C. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluid 35:93–116, 2001.CrossRefGoogle Scholar
  42. 42.
    Wilson, N., K. Wang, R. W. Dutton, and C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456, 2001.CrossRefGoogle Scholar
  43. 43.
    Wolf, Y. G., W. S. Thomas, F. J. Brennan, W. G. Goff, M. J. Sise, and E. F. Bernstein. Computed tomography scanning findings associated with rapid expansion of abdominal aortic aneurysms. J. Vasc. Surg. 20:529–535, 1994.PubMedGoogle Scholar
  44. 44.
    Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient in known. J. Physiol. 127:553–563, 1955.PubMedGoogle Scholar
  45. 45.
    Yeung, J. J., H. J. Kim, T. A. Abbruzzese, I. E. Vignon-Clementel, M. T. Draney-Blomme, K. K. Yeung, I. Perkash, R. J. Herfkens, C. A. Taylor, and R. J. Dalman. Aortoiliac hemodynamics and morphologic adaptation to chronic spinal cord injury. J. Vasc. Surg. 44:1254–1265, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Ga-Young Suh
    • 1
  • Andrea S. Les
    • 2
  • Adam S. Tenforde
    • 2
  • Shawn C. Shadden
    • 3
  • Ryan L. Spilker
    • 4
  • Janice J. Yeung
    • 5
  • Christopher P. Cheng
    • 5
  • Robert J. Herfkens
    • 4
  • Ronald L. Dalman
    • 5
  • Charles A. Taylor
    • 2
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of BioengineeringStanford UniversityStanfordUSA
  3. 3.Department of Mechanical and Aerospace EngineeringIllinois Institute of TechnologyChicagoUSA
  4. 4.Department of RadiologyStanford UniversityStanfordUSA
  5. 5.Division of Vascular SurgeryStanford UniversityStanfordUSA

Personalised recommendations