Annals of Biomedical Engineering

, Volume 39, Issue 2, pp 674–687 | Cite as

RETRACTED ARTICLE: Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

  • Rachel Sensenig
  • Sameer Kalghatgi
  • Ekaterina Cerchar
  • Gregory Fridman
  • Alexey Shereshevsky
  • Behzad Torabi
  • Krishna Priya Arjunan
  • Erica Podolsky
  • Alexander Fridman
  • Gary Friedman
  • Jane Azizkhan-Clifford
  • Ari D. Brooks
Article

Abstract

Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p < 0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p < 0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-l-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies.

Keywords

Apoptosis Non-thermal plasma Reactive oxygen species Cancer therapy Plasma medicine 

Notes

Acknowledgments

We would like to acknowledge Monica Jost for her help and guidance with the TUNEL assay and Dr. Christian Sell for allowing us to use his flow cytometer to carry out the Annexin-V/PI assay.

References

  1. 1.
    Berk, L. B. Radiation therapy as primary and adjuvant treatment for local and regional melanoma. Cancer Control 15(3):233–238, 2008.PubMedGoogle Scholar
  2. 2.
    Colt, H. G., and S. W. Crawford. In vitro study of the safety limits of bronchoscopic argon plasma coagulation in the presence of airway stents. Respirology 11(5):643–647, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Coulombe, S. Live cell permeabilization using the APGD-t. In: 1st International Conference on Plasma Medicine (ICPM), Corpus Christi, TX, 2007.Google Scholar
  4. 4.
    Coulombe, S., et al. Miniature atmospheric pressure glow discharge torch (APGD-t) for local biomedical applications. Pure Appl. Chem. 78(6):1137–1146, 2006.CrossRefGoogle Scholar
  5. 5.
    Eliasson, B., W. Egli, and U. Kogelschatz. Modelling of dielectric barrier discharge chemistry. Pure Appl. Chem. 66(6):1275–1286, 1994.CrossRefGoogle Scholar
  6. 6.
    Eton, O. Chemotherapy, cytokines, and biochemotherapy for melanoma. Cancer Chemother. Biol. Response Modif. 22:739–748, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Fiers, W., et al. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18(54):7719–7730, 1999.PubMedCrossRefGoogle Scholar
  8. 8.
    Flaherty, K. T. Chemotherapy and targeted therapy combinations in advanced melanoma. Clin. Cancer Res. 12(Pt 2):2366–2370, 2006.CrossRefGoogle Scholar
  9. 9.
    Fridman, A. Plasma biology and plasma medicine. In: Plasma Chemistry. New York, NY: Cambridge University Press, 2008, pp. 848–857.Google Scholar
  10. 10.
    Fridman, A. Plasma Chemistry. New York, NY: Cambridge University Press, 2008.CrossRefGoogle Scholar
  11. 11.
    Fridman, A. Plasma Biology and Plasma Medicine. New York: Cambridge University Press, 2008.Google Scholar
  12. 12.
    Fridman, A., A. Chirokov, and A. Gutsol. Non-thermal atmospheric pressure discharges. J. Phys. D: Appl. Phys. 38:R1–R24, 2005.CrossRefGoogle Scholar
  13. 13.
    Fridman, A. and L. A. Kennedy. Plasma Physics and Engineering. New York: Routledge, 2004, 853 pp.Google Scholar
  14. 14.
    Fridman, G., et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier. Disch. Air Plasma Chem. Plasma Process. 26(4):425–442, 2006.CrossRefGoogle Scholar
  15. 15.
    Fridman, G., et al. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process. Polym. 4(4):370–375, 2007.CrossRefGoogle Scholar
  16. 16.
    Gebicki, S., and J. M. Gebicki. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem. J. 289(Pt 3):743–749, 1993.PubMedGoogle Scholar
  17. 17.
    Ginsberg, G. G., et al. The argon plasma coagulator: February 2002. Gastrointest. Endosc. 55(7):807–810, 2002.PubMedCrossRefGoogle Scholar
  18. 18.
    Goree, J., L. Bin, D. Drake, and E. Stoffels. Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. IEEE Trans Plasma Sci 34(4):1317–1324, 2006.CrossRefGoogle Scholar
  19. 19.
    Gostev, V. and D. Dobrynin. Medical microplasmatron. In: 3rd International Workshop on Microplasmas (IWM-2006), Greifswald, Germany, 2006.Google Scholar
  20. 20.
    Hu, W., and J. J. Kavanagh. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol. 4(12):721–729, 2003.PubMedCrossRefGoogle Scholar
  21. 21.
    Jaattela, M. Programmed cell death: many ways for cells to die decently. Ann. Med. 34(6):480–488, 2002.PubMedCrossRefGoogle Scholar
  22. 22.
    Kalghatgi, S., et al. Applications of non thermal atmospheric pressure plasma in medicine. In: NATO Advanced Study Institute on Plasma Assisted Decontamination of Biological and Chemical Agents. Cesme-Izmir, Turkey: Springer, 2007.Google Scholar
  23. 23.
    Kalghatgi, S., et al. Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans. Plasma Sci. 35(5):1559–1566, 2007.CrossRefGoogle Scholar
  24. 24.
    Kalghatgi, S., et al. Penetration of direct non-thermal plasma treatment into living cells. In: IEEE 35th International Conference on Plasma Science, Karlsruhe, Germany, 2008.Google Scholar
  25. 25.
    Kalghatgi, S., et al. Toxicity analysis of direct non-thermal plasma treatment of living tissue. In: IEEE 35th International Conference on Plasma Science, Karlsruhe, Germany, 2008.Google Scholar
  26. 26.
    Kalghatgi, S., et al. Toxicity of non-thermal plasma treatment of endothelial cells. In: IEEE 35th International Conference on Plasma Science, Karlsruhe, Germany, 2008.Google Scholar
  27. 27.
    Kalghatgi, S. U., et al. Non-thermal dielectric barrier discharge plasma treatment of endothelial cells. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, BC, Canada: Inst. of Elec. and Elec. Eng. Computer Society, 2008.Google Scholar
  28. 28.
    Kalghatgi, S., et al. On the interaction of non-thermal atmospheric pressure plasma with tissues. In: Proceedings of the IEEE 17th International Pulsed Power Conference, Washington, DC, 2009.Google Scholar
  29. 29.
    Kalghatgi, S., et al. Toxicity of direct non-thermal atmospheric pressure plasma treatment of living tissue. In: Proceedings of the IEEE 17th International Pulsed Power Conference, Washington DC, 2009.Google Scholar
  30. 30.
    Kalghatgi, S., et al. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38(3):748–757, 2010.PubMedCrossRefGoogle Scholar
  31. 31.
    Kawiak, A., et al. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicol. Appl. Pharmacol. 223(3):267–276, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Kieft, I. E., M. Kurdi, and E. Stoffels. Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Trans. Plasma Sci. 34(4):1331–1336, 2006.CrossRefGoogle Scholar
  33. 33.
    Kieft, I. E., et al. Plasma treatment of mammalian vascular cells: a quantitative description. IEEE Trans. Plasma Sci. 33(2):771–775, 2005.CrossRefGoogle Scholar
  34. 34.
    Kogelschatz, U., et al. Non-Equilibrium Air Plasmas at Atmospheric Pressure. 1st ed. Plasma Physics. London: Taylor & Francis, 2004.Google Scholar
  35. 35.
    Kuo, S. P., O. Tarasenko, S. Popovic, and K. Levon. Killing of bacterial spores contained in a paper envelope by a microwave plasma torch. IEEE Trans. Plasma Sci. 34(4):1275–1280, 2006.CrossRefGoogle Scholar
  36. 36.
    Laroussi, M. Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process. Polym. 2:391–400, 2005.CrossRefGoogle Scholar
  37. 37.
    Laroussi, M., I. Alexeff, and W. L. Kang. Biological decontamination by nonthermal plasmas. IEEE Trans. Plasma Sci. 28(1):184–188, 2000.CrossRefGoogle Scholar
  38. 38.
    Laroussi, M., and F. Leipold. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233(1–3):81–86, 2004.Google Scholar
  39. 39.
    Laroussi, M., D. A. Mendis, and M. Rosenberg. Plasma interaction with microbes. New J. Phys. 5:41.1–41.10, 2003.CrossRefGoogle Scholar
  40. 40.
    Laroussi, M., et al. Inactivation of bacteria by the plasma pencil. Plasma Process. Polym. 3(6–7):470–473, 2006.CrossRefGoogle Scholar
  41. 41.
    Lehnert, B. E., and R. Iyer. Exposure to low-level chemicals and ionizing radiation: reactive oxygen species and cellular pathways. Hum. Exp. Toxicol. 21(2):65–69, 2002.PubMedCrossRefGoogle Scholar
  42. 42.
    Léveillé, V., and S. Coulombe. Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species. Plasma Sources Sci. Technol. 14:467–476, 2005.CrossRefGoogle Scholar
  43. 43.
    Lord, M. J., J. A. Maltry, and L. M. Shall. Thermal injury resulting from arthroscopic lateral retinacular release by electrocautery: report of three cases and a review of the literature. Arthroscopy 7(1):33–37, 1991.PubMedCrossRefGoogle Scholar
  44. 44.
    Majno, G., and I. Joris. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146(1):3–15, 1995.PubMedGoogle Scholar
  45. 45.
    Mandara, M., et al. Chemotherapy for metastatic melanoma. Expert Rev. Anticancer Ther. 6(1):121–130, 2006.PubMedCrossRefGoogle Scholar
  46. 46.
    Nuccitelli, R., et al. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int. J. Cancer 125(2):438–445, 2009.PubMedCrossRefGoogle Scholar
  47. 47.
    Pak, B. J., et al. Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene 23(1):30–38, 2004.PubMedCrossRefGoogle Scholar
  48. 48.
    Porter, K. A., et al. Electrocautery as a factor in seroma formation following mastectomy. Am. J. Surg. 176(1):8–11, 1998.PubMedCrossRefGoogle Scholar
  49. 49.
    Puhlev, I., et al. Desiccation tolerance in human cells. Cryobiology 42(3):207–217, 2001.PubMedCrossRefGoogle Scholar
  50. 50.
    Raiser, J., and M. Zenker. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J. Phys. D: Appl. Phys. 39(16):3520, 2006.CrossRefGoogle Scholar
  51. 51.
    Rappaport, W. D., et al. Effect of electrocautery on wound healing in midline laparotomy incisions. Am. J. Surg. 160(6):618–620, 1990.PubMedCrossRefGoogle Scholar
  52. 52.
    Rath, P. C., and B. B. Aggarwal. TNF-induced signaling in apoptosis. J. Clin. Immunol. 19(6):350–364, 1999.PubMedCrossRefGoogle Scholar
  53. 53.
    Ratha, J., et al. Attenuated Leishmanial sphingolipid induces apoptosis in A375 human melanoma cell via both caspase-dependent and -independent pathways. Mol. Cell. Biochem. 304(1–2):143–154, 2007.PubMedCrossRefGoogle Scholar
  54. 54.
    Reed, J. C. Apoptosis-based therapies. Nat. Rev. Drug. Discov. 1(2):111–121, 2002.PubMedCrossRefGoogle Scholar
  55. 55.
    Rogakou, E., et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273:5858–5868, 1998.PubMedCrossRefGoogle Scholar
  56. 56.
    Schild, S. E. Role of radiation therapy in the treatment of melanoma. Expert Rev. Anticancer Ther. 9(5):583–586, 2009.PubMedCrossRefGoogle Scholar
  57. 57.
    Sharma, A., A. Pruden, O. Stan, G. J. Collins. Bacterial inactivation using an RF-powered atmospheric pressure plasma. IEEE Trans. Plasma Sci. 34(4), 2006.Google Scholar
  58. 58.
    Shekhter, A. B., et al. Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric Oxide Biol. Chem. 12(4): 210–219, 2005.Google Scholar
  59. 59.
    Siemens, C. W. On the electrical tests employed during the construction of the Malta and Alexandria telegraph, and on insulating and protecting submarine cables. J. Frankl. Inst. 74(3):166–170, 1862.CrossRefGoogle Scholar
  60. 60.
    Simmons, P. D., F. Langlet, and R. N. Thin. Cryotherapy versus electrocautery in the treatment of genital warts. Br. J. Vener. Dis. 57(4):273–274, 1981.PubMedGoogle Scholar
  61. 61.
    Sladek, R. E. J., and E. Stoffels. Deactivation of Escherichia coli by the plasma needle. J. Phys. D: Appl. Phys. 38:1716–1721, 2005.CrossRefGoogle Scholar
  62. 62.
    Soengas, M. S., and S. W. Lowe. Apoptosis and melanoma chemoresistance. Oncogene 22(20):3138–3151, 2003.PubMedCrossRefGoogle Scholar
  63. 63.
    Stevens, G., and A. Hong. Radiation therapy in the management of cutaneous melanoma. Surg. Oncol. Clin. N. Am. 15(2):353–371, 2006.PubMedCrossRefGoogle Scholar
  64. 64.
    Stoffels, E. Gas plasmas in biology and medicine. J. Phys. D: Appl. Phys. 39(16), 2006.Google Scholar
  65. 65.
    Stoffels, E., et al. Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources Sci. Technol. 15(4):S169–S180, 2006.CrossRefGoogle Scholar
  66. 66.
    Stoffels, E., et al. Cold gas plasma in biology and medicine. In: Advanced Plasma Technology, edited by R. d’Agostino. Weinheim: Wiley-VCH, 2008, pp. 301–318.Google Scholar
  67. 67.
    Tarasenko, O., S. Nourbakhsh, S. P. Kuo, A. Bakhtina, P. Alusta, D. Kudasheva, M. Cowman, and K. Levon. Scanning electron and atomic force microscopy to study plasma torch effects on B. cereus Spores. IEEE Trans. Plasma Sci. 34(4):1281–1289, 2006.CrossRefGoogle Scholar
  68. 68.
    Vargo, J. J. Clinical applications of the argon plasma coagulator. Gastrointest. Endosc. 59(1):81–88, 2004.PubMedCrossRefGoogle Scholar
  69. 69.
    Williamson, J. M., D. D. Trump, P. Bletzinger, and B. N. Ganguly. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge. J. Phys. D: Appl. Phys. 39:4400–4406, 2006.CrossRefGoogle Scholar
  70. 70.
    Yang, J., Y. Su, and A. Richmond. Antioxidants tiron and N-acetyl-l-cysteine differentially mediate apoptosis in melanoma cells via a reactive oxygen species-independent NF-kappaB pathway. Free Radic. Biol. Med. 42(9):1369–1380, 2007.PubMedCrossRefGoogle Scholar
  71. 71.
    Zafarullah, M., et al. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 60(1):6–20, 2003.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang, R., L. Wang, Y. Wu, Z. Guan, and Z. Jia. Bacterial decontamination of water by bipolar pulsed discharge in a gas; liquid; solid three-phase discharge reactor. IEEE Trans. Plasma Sci. 34(4):1370–1374, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Rachel Sensenig
    • 1
  • Sameer Kalghatgi
    • 2
    • 6
  • Ekaterina Cerchar
    • 1
  • Gregory Fridman
    • 3
  • Alexey Shereshevsky
    • 1
  • Behzad Torabi
    • 4
  • Krishna Priya Arjunan
    • 3
  • Erica Podolsky
    • 1
  • Alexander Fridman
    • 5
  • Gary Friedman
    • 2
  • Jane Azizkhan-Clifford
    • 4
  • Ari D. Brooks
    • 1
  1. 1.Department of Surgery, College of MedicineDrexel UniversityPhiladelphiaUSA
  2. 2.Electrical and Computer EngineeringDrexel UniversityPhiladelphiaUSA
  3. 3.School of Biomedical EngineeringDrexel UniversityPhiladelphiaUSA
  4. 4.Molecular Biology and Biochem, College of MedicineDrexel UniversityPhiladelphiaUSA
  5. 5.Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphiaUSA
  6. 6.Department of Biomedical Engineering, Centre for Advanced BiotechnologyBoston UniversityBostonUSA

Personalised recommendations