Annals of Biomedical Engineering

, Volume 39, Issue 2, pp 884–896

Computational Hemodynamics in Cerebral Aneurysms: The Effects of Modeled Versus Measured Boundary Conditions

  • Alberto Marzo
  • Pankaj Singh
  • Ignacio Larrabide
  • Alessandro Radaelli
  • Stuart Coley
  • Matt Gwilliam
  • Iain D. Wilkinson
  • Patricia Lawford
  • Philippe Reymond
  • Umang Patel
  • Alejandro Frangi
  • D. Rod Hose
Article

Abstract

Modeling of flow in intracranial aneurysms (IAs) requires flow information at the model boundaries. In absence of patient-specific measurements, typical or modeled boundary conditions (BCs) are often used. This study investigates the effects of modeled versus patient-specific BCs on modeled hemodynamics within IAs. Computational fluid dynamics (CFD) models of five IAs were reconstructed from three-dimensional rotational angiography (3DRA). BCs were applied using in turn patient-specific phase-contrast-MR (pc-MR) measurements, a 1D-circulation model, and a physiologically coherent method based on local WSS at inlets. The Navier–Stokes equations were solved using the Ansys®-CFX™ software. Wall shear stress (WSS), oscillatory shear index (OSI), and other hemodynamic indices were computed. Differences in the values obtained with the three methods were analyzed using boxplot diagrams. Qualitative similarities were observed in the flow fields obtained with the three approaches. The quantitative comparison showed smaller discrepancies between pc-MR and 1D-model data, than those observed between pc-MR and WSS-scaled data. Discrepancies were reduced when indices were normalized to mean hemodynamic aneurysmal data. The strong similarities observed for the three BCs models suggest that vessel and aneurysm geometry have the strongest influence on aneurysmal hemodynamics. In absence of patient-specific BCs, a distributed circulation model may represent the best option when CFD is used for large cohort studies.

Keywords

Computational fluid dynamics Phase-contrast MRI 1D circulation model 

References

  1. 1.
    Boussel, L., V. Rayz, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39(11):2997–3002, 2008.CrossRefPubMedGoogle Scholar
  2. 2.
    Castro, M. A., C. M. Putman, et al. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am. J. Neuroradiol. 27(8):1703–1709, 2006.PubMedGoogle Scholar
  3. 3.
    Castro, M. A., C. M. Putman, et al. Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am. J. Neuroradiol. 27(10):2061–2068, 2006.PubMedGoogle Scholar
  4. 4.
    Castro, M. A., C. M. Putman, et al. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad. Radiol. 13(7):811–821, 2006.CrossRefPubMedGoogle Scholar
  5. 5.
    Cebral, J. R., M. A. Castro, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24(4):457–467, 2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Cebral, J. R., M. A. Castro, et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol. 26(10):2550–2559, 2005.PubMedGoogle Scholar
  7. 7.
    Cebral, J. R., M. A. Castro, et al. Flow–area relationship in internal carotid and vertebral arteries. Physiol. Meas. 29(5):585–594, 2008.CrossRefPubMedGoogle Scholar
  8. 8.
    Cebral, J. R., S. Hendrickson, et al. Hemodynamics in a lethal basilar artery aneurysm just before its rupture. AJNR Am. J. Neuroradiol. 30(1):95–98, 2009.CrossRefPubMedGoogle Scholar
  9. 9.
    Chatziprodromou, I., V. D. Butty, et al. Pulsatile blood flow in anatomically accurate vessels with multiple aneurysms: a medical intervention planning application of computational haemodynamics. Flow Turbul. Combust. 71:333–346, 2003.CrossRefGoogle Scholar
  10. 10.
    Cheng, C., F. Helderman, et al. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis 195(2):225–235, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    Dempere-Marco, L., E. Oubel, et al. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. Med. Image Comput. Comput. Assist. Interv. 9(Pt 2):438–445, 2006.PubMedGoogle Scholar
  12. 12.
    Fedorov, B. M., T. V. Sebekina, et al. [Stress and blood circulation in man]. Kosm. Biol. Aviakosm. Med. 24(3):35–40, 1990.PubMedGoogle Scholar
  13. 13.
    Ferns, S. P., J. J. Schneiders, et al. Intracranial blood-flow velocity and pressure measurements using an intra-arterial dual-sensor guidewire. AJNR Am. J. Neuroradiol. 31(2):324–326, 2010.CrossRefPubMedGoogle Scholar
  14. 14.
    Ford, M. D., H. N. Nikolov, et al. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2):021015, 2008.CrossRefPubMedGoogle Scholar
  15. 15.
    Formaggia, L., J. F. Gerbeau, et al. On the coupling of 3d and 1d Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191:561–582, 2001.CrossRefGoogle Scholar
  16. 16.
    Gonzalez-Alonso, J., M. K. Dalsgaard, et al. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 557(Pt 1):331–342, 2004.CrossRefPubMedGoogle Scholar
  17. 17.
    Gwilliam, M. N., N. Hoggard, et al. MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. J. Cereb. Blood Flow Metab. 29(12):1975–1982, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Hajjar, I., M. Selim, et al. The relationship between nighttime dipping in blood pressure and cerebral hemodynamics in nonstroke patients. J. Clin. Hypertens. (Greenwich) 9(12):929–936, 2007.CrossRefGoogle Scholar
  19. 19.
    Hassan, T., M. Ezura, et al. Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am. J. Neuroradiol. 25(1):63–68, 2004.PubMedGoogle Scholar
  20. 20.
    Hop, J. W., G. J. Rinkel, et al. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke 28(3):660–664, 1997.PubMedGoogle Scholar
  21. 21.
    Ide, K., and N. H. Secher. Cerebral blood flow and metabolism during exercise. Prog. Neurobiol. 61(4):397–414, 2000.CrossRefPubMedGoogle Scholar
  22. 22.
    Isoda, H., Y. Ohkura, et al. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology 52(10):921–928, 2010.CrossRefPubMedGoogle Scholar
  23. 23.
    Jou, L. D., D. H. Lee, et al. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am. J. Neuroradiol. 29(9):1761–1767, 2008.CrossRefPubMedGoogle Scholar
  24. 24.
    Jou, L. D., C. M. Quick, et al. Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am. J. Neuroradiol. 24(9):1804–1810, 2003.PubMedGoogle Scholar
  25. 25.
    Jou, L. D., G. Wong, et al. Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am. J. Neuroradiol. 26(9):2357–2363, 2005.PubMedGoogle Scholar
  26. 26.
    Karmonik, C., G. Benndorf, et al. Wall shear stress variations in basilar tip aneurysms investigated with computational fluid dynamics. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3214–3217, 2006.CrossRefPubMedGoogle Scholar
  27. 27.
    Kulikov, V. P., V. N. Grechishnikov, et al. [Response of cerebral hemodynamics to combined stress impacts]. Patol. Fiziol. Eksp. Ter. 1:7–9, 2005.PubMedGoogle Scholar
  28. 28.
    Lagana, K., G. Dubini, et al. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39(3–4):359–364, 2002.PubMedGoogle Scholar
  29. 29.
    Mantha, A., C. Karmonik, et al. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am. J. Neuroradiol. 27(5):1113–1118, 2006.PubMedGoogle Scholar
  30. 30.
    Marzo, A., P. Singh, et al. Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms. Comput. Methods Biomech. Biomed. Eng. 12(4):431–444, 2009.CrossRefGoogle Scholar
  31. 31.
    Mitsos, A. P., N. M. Kakalis, et al. Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note. Neuroradiology 50(4):341–347, 2008.CrossRefPubMedGoogle Scholar
  32. 32.
    Moyle, K. R., L. Antiga, et al. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J. Biomech. Eng. 128(3):371–379, 2006.CrossRefPubMedGoogle Scholar
  33. 33.
    Oshima, M., H. Sakai, et al. Modelling of inflow boundary conditions for image-based simulation of cerebrovascular flow. Int. J. Numer. Methods Fluids 47:603–617, 2005.CrossRefGoogle Scholar
  34. 34.
    Quarteroni, A., and L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system. In: Handbook of Numerical Analysis, Vol. 12, edited by P. G. Ciarlet, and J. L. Lions. Amsterdam: Elsevier, 2004, pp. 3–127.Google Scholar
  35. 35.
    Radaelli, A. G., L. Augsburger, et al. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model—a report on the Virtual Intracranial Stenting Challenge 2007. J. Biomech. 41(10):2069–2081, 2008.CrossRefPubMedGoogle Scholar
  36. 36.
    Rayz, V. L., L. Boussel, et al. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130(5):051011, 2008.CrossRefPubMedGoogle Scholar
  37. 37.
    Reymond, P., F. Merenda, et al. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1):H208–H222, 2009.CrossRefPubMedGoogle Scholar
  38. 38.
    Sekhar, L. N., and R. C. Heros. Origin, growth, and rupture of saccular aneurysms: a review. Neurosurgery 8(2):248–260, 1981.CrossRefPubMedGoogle Scholar
  39. 39.
    Shimogonya, Y., T. Ishikawa, et al. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42(4):550–554, 2009.CrossRefPubMedGoogle Scholar
  40. 40.
    Shojima, M., M. Oshima, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35(11):2500–2505, 2004.CrossRefPubMedGoogle Scholar
  41. 41.
    Shojima, M., M. Oshima, et al. Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36(9):1933–1938, 2005.CrossRefPubMedGoogle Scholar
  42. 42.
    Singh, P. K., A. Marzo, et al. Effects of heparin on the hemodynamic characteristics of intracranial aneurysms. J. Neuroradiol. Apr 5.Google Scholar
  43. 43.
    Steinman, D. A., J. S. Milner, et al. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24(4):559–566, 2003.PubMedGoogle Scholar
  44. 44.
    Venugopal, P., D. Valentino, et al. Sensitivity of patient-specific numerical simulation of cerebral aneurysm hemodynamics to inflow boundary conditions. J. Neurosurg. 106(6):1051–1060, 2007.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao, M., S. Amin-Hanjani, et al. Regional cerebral blood flow using quantitative MR angiography. AJNR Am. J. Neuroradiol. 28(8):1470–1473, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Alberto Marzo
    • 1
  • Pankaj Singh
    • 2
  • Ignacio Larrabide
    • 3
    • 4
    • 5
  • Alessandro Radaelli
    • 6
  • Stuart Coley
    • 7
  • Matt Gwilliam
    • 8
  • Iain D. Wilkinson
    • 9
  • Patricia Lawford
    • 1
  • Philippe Reymond
    • 10
  • Umang Patel
    • 11
  • Alejandro Frangi
    • 3
    • 4
    • 5
  • D. Rod Hose
    • 1
  1. 1.Department of Cardiovascular Science, Academic Unit of Medical Physics, Faculty of Medicine and Biomedical SciencesUniversity of SheffieldSheffieldUK
  2. 2.Departments of Medical Physics and NeurosurgeryRoyal Hallamshire HospitalSheffieldUK
  3. 3.Centre for Computational Imaging and Simulation Technologies in BiomedicineUniversitat Pompeu Fabra (UPF)BarcelonaSpain
  4. 4.Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)BarcelonaSpain
  5. 5.Institució Catalana de Recerca i Estudis Avaçats (ICREA)BarcelonaSpain
  6. 6.Philips HealthcareBestThe Netherlands
  7. 7.Department of NeuroradiologyRoyal Hallamshire HospitalSheffieldUK
  8. 8.Medical Physics and Clinical EngineeringSheffield Teaching Hospitals NHSSheffieldUK
  9. 9.Department of Human Metabolism, Academic Unit of RadiologyUniversity of SheffieldSheffieldUK
  10. 10.Laboratory of Hemodynamics and Cardiovascular Technology (LHCT)École Polytechnique Fédérale de LausanneLausanneSwitzerland
  11. 11.Department of NeurosurgeryRoyal Hallamshire HospitalSheffieldUK

Personalised recommendations