Advertisement

Annals of Biomedical Engineering

, Volume 39, Issue 1, pp 324–336 | Cite as

Numerical, Hydraulic, and Hemolytic Evaluation of an Intravascular Axial Flow Blood Pump to Mechanically Support Fontan Patients

  • Amy L. Throckmorton
  • Jugal Y. Kapadia
  • Steven G. Chopski
  • Sonya S. Bhavsar
  • William B. Moskowitz
  • Scott D. Gullquist
  • James J. Gangemi
  • Christopher M. Haggerty
  • Ajit P. Yoganathan
Article

Abstract

Currently available mechanical circulatory support systems are limited for adolescent and adult patients with a Fontan physiology. To address this growing need, we are developing a collapsible, percutaneously-inserted, axial flow blood pump to support the cavopulmonary circulation in Fontan patients. During the first phase of development, the design and experimental evaluation of an axial flow blood pump was performed. We completed numerical modeling of the pump using computational fluid dynamics analysis, hydraulic testing of a plastic pump prototype, and blood bag experiments (n = 7) to measure the levels of hemolysis produced by the pump. Statistical analyses using regression were performed. The prototype with a 4-bladed impeller generated a pressure rise of 2–30 mmHg with a flow rate of 0.5–4 L/min for 3000–6000 RPM. A comparison of the experimental performance data to the numerical predictions demonstrated an excellent agreement with a maximum deviation being less than 6%. A linear increase in the plasma-free hemoglobin (pfHb) levels during the 6-h experiments was found, as desired. The maximum pfHb level was measured to be 21 mg/dL, and the average normalized index of hemolysis was determined to be 0.0097 g/100 L for all experiments. The hydraulic performance of the prototype and level of hemolysis are indicative of significant progress in the design of this blood pump. These results support the continued development of this intravascular pump as a bridge‐to‐transplant, bridge‐to‐recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction for Fontan patients.

Keywords

Artificial right ventricle Blood pump Cavopulmonary assist device Heart pump Intravascular blood pump Mechanical cavopulmonary assist Pediatric circulatory support Single ventricle physiology 

Notes

Acknowledgments

The authors wish to acknowledge the financial support for this work provided by the Thomas F. and Katie Jeffress Memorial Trust, Phase I and Phase II Award (Grant Number: J-874), American Heart Association Beginning Grant-in-Aid (Grant Number: 0865320E), National Science Foundation (Grant Number: EEC-0823383), 2009 Oak Ridge Associated Universities (ORAU) Ralph E. Powe Junior Faculty Enhancement Award, and the U.S. Department of Education GAANN Interdisciplinary Graduate Engineering Education and Research (I-GEEAR) fellowship awards (S. S. Bhavsar and S. G. Chopski), and the Mendel Family Diary Farm in Amelia County, VA.

References

  1. 1.
    Bhavsar, S. S., J. Y. Kapadia, S. G. Chopski, and A. L. Throckmorton. Intravascular mechanical cavopulmonary assistance for patients with failing Fontan physiology. Artif. Organs 33(11):977–987, 2009.CrossRefPubMedGoogle Scholar
  2. 2.
    Bhavsar, S. S., W. B. Moskowitz, and A. L. Throckmorton. Interaction of an idealized cavopulmonary circulation with mechanical circulatory assist using an intravascular rotary blood pump. Artif. Organs (in press).Google Scholar
  3. 3.
    Bludszuweit, C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19:590–596, 1995.CrossRefPubMedGoogle Scholar
  4. 4.
    Chopski, S. G., E. A. Downs, S. S. Bhavsar, J. Y. Kapadia, C. M. Haggerty, A. P. Yoganathan, and A. L. Throckmorton. Particle image velocimetry measurements of an idealized total cavopulmonary connection with mechanical circulatory assistance in the inferior vena cava. In: 6th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion, Boston, MA, USA, May 6–8, 2010.Google Scholar
  5. 5.
    Christianson, A., C. P. Howson, and B. Modell. March of Dimes Global Report on Birth Defects: The Hidden Toll of Dying and Disabled Children. White Plains, NY: March of Dimes Birth Defects Foundation, 2006.Google Scholar
  6. 6.
    de Leval, M. R., G. Dubini, F. Migiliavacca, et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in the cavopulmonary connections. J. Thorac. Cardiovasc. Surg. 111:502–511, 1996.CrossRefPubMedGoogle Scholar
  7. 7.
    Ensley, A. E., A. Ramuzat, T. M. Healy, C. Lucas, S. Sharma, R. Pettigrew, and A. P. Yoganathan. Fluid mechanic assessment of the total cavopulmoary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry. Ann. Biomed. Eng. 28:1172–1183, 2000.CrossRefPubMedGoogle Scholar
  8. 8.
    Hosein, R., A. J. Clarke, S. P. McGuirk, M. Griselli, O. Stumper, J. V. De Giovanni, D. J. Barron, and W. J. Brawn. Factors influencing early and late outcome following the Fontan procedure in the current era. The ‘Two Commandment’s? Eur. J. Cardiothorac. Surg. 31:344–353, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    Kapadia, J. Y., K. C. Pierce, A. K. Poupore, and A. L. Throckmorton. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist. ASAIO J. 56:17–23, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Karassik, I., W. C. Krutzsch, W. H. Fraser, and J. P. Messina. Pump Handbook (2nd ed.). New York: McGraw-Hill Book Company, 1986.Google Scholar
  11. 11.
    Kayatas, M., N. Ozdemir, H. Muderrisoglu, M. Ulucam, M. Turan, and N. Hizel. Comparison of the non-invasive methods estimating dry weight in hemodialysis patients. Renal Failure 28:217–222, 2006.CrossRefPubMedGoogle Scholar
  12. 12.
    Khairy, P., S. M. Fernandez, J. E. Mayer, J. K. Triedman, E. P. Walsh, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117:85–92, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Lacour-Gayet, F. G., C. J. Lanning, S. Stoica, et al. An artificial right ventricle for failing Fontan: in vitro and computational study. Ann. Thorac. Surg. 88:170–176, 2009.CrossRefPubMedGoogle Scholar
  14. 14.
    Malinauskas, R. A. Plasma hemoglobin measurement techniques for the in vitro evaluation of blood damage caused by medical devices. Artif. Organs 21(12):1255–1267, 1997.CrossRefPubMedGoogle Scholar
  15. 15.
    Mueller, M. R., H. Schima, H. Engelhardt, A. Salat, D. B. Olsen, U. Losert, and E. Wolner. In vitro hematological testing of rotary blood pumps: remarks on standardization and data interpretation. Artif. Organs 17(2):103–110, 1993.CrossRefPubMedGoogle Scholar
  16. 16.
    Nosé, Y. Design and development strategy for the rotary blood pump. Artif. Organs 22(6):438–446, 1998.CrossRefPubMedGoogle Scholar
  17. 17.
    Paul, R., J. Apel, S. Klaus, F. Schugner, P. Schwindke, and H. Reul. Shear stress related blood damage in laminar Couette flow. Artif. Organs 27(6):517–529, 2003.CrossRefPubMedGoogle Scholar
  18. 18.
    Pekkan, K., D. de Zélicourt, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, and A. P. Yoganathan. Physics-driven CFD modeling of complex anatomical cardiovascular flows—a TCPC case study. Ann. Biomed. Eng. 33(3):284–300, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Riemer, K., G. Amir, S. H. Reichenbach, and O. Reinhartz. Mechanical support of total cavopulmonary connection with an axial flow pump. J. Thorac. Cardiovasc. Surg. 130:351–354, 2005.CrossRefPubMedGoogle Scholar
  20. 20.
    Rodefeld, M., J. H. Boyd, B. J. LaLone, et al. Cavopulmonary assist: circulatory support for the univentricular Fontan circulation. Ann. Thorac. Surg. 76:1911–1916, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    Rodefeld, M. D., B. Coats, T. Fisher, J. Brown, and S. H. Frankel. Cavopulmonary assist using a percutaneous, bi-conical, single impeller pump: a new spin for Fontan circulatory support. In: 89th Annual Meeting of the American Association for Thoracic Surgery, Boston, MA, USA, May 9–13, 2009.Google Scholar
  22. 22.
    Ryu, K., T. M. Healy, A. E. Ensley, S. Sharma, C. Lucas, and A. P. Yoganathan. Importance of accurate geometry in the study of the total cavopulmonary connection: computational simulations and in vitro experiments. Ann. Biomed. Eng. 29:844–853, 2001.CrossRefPubMedGoogle Scholar
  23. 23.
    Schlichting, H. Boundary-Layer Theory (7th ed.). New York: McGraw-Hill, Inc., 1979.Google Scholar
  24. 24.
    Song, X., A. L. Throckmorton, H. G. Wood, J. F. Antaki, and D. B. Olsen. Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics. J. Fluid Eng. 126:410–418, 2004.CrossRefGoogle Scholar
  25. 25.
    Stepanoff, A. Centrifugal and Axial Flow Pumps (2nd ed.). New York: Krieger Publishing Company, 1957.Google Scholar
  26. 26.
    Throckmorton, A. L., K. K. Ballman, C. D. Myers, S. H. Frankel, J. W. Brown, and M. D. Rodefeld. Performance of an expandable propeller pump for cavopulmonary assist in a univentricular Fontan circulation. Ann. Thorac. Surg. 86:1343–1347, 2008.CrossRefPubMedGoogle Scholar
  27. 27.
    Throckmorton, A. L., and S. G. Chopski. Pediatric circulatory support systems: current strategies and future directions. Biventricular and univentricular mechanical assistance. ASAIO J. 54:491–497, 2008.CrossRefPubMedGoogle Scholar
  28. 28.
    Throckmorton, A. L., A. Untaroiu, P. E. Allaire, H. G. Wood, D. S. Lim, M. A. McCulloch, and D. B. Olsen. Numerical design and experimental hydraulic testing of an axial flow VAD for infants and children. ASAIO J. 53:754–761, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Amy L. Throckmorton
    • 1
  • Jugal Y. Kapadia
    • 1
  • Steven G. Chopski
    • 1
  • Sonya S. Bhavsar
    • 1
  • William B. Moskowitz
    • 2
  • Scott D. Gullquist
    • 2
  • James J. Gangemi
    • 3
  • Christopher M. Haggerty
    • 4
  • Ajit P. Yoganathan
    • 4
  1. 1.Department of Mechanical Engineering, School of EngineeringVirginia Commonwealth UniversityRichmondUSA
  2. 2.The Division of Pediatric Cardiology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA
  3. 3.The Division of Thoracic and Cardiovascular Surgery, School of MedicineUniversity of VirginiaCharlottesvilleUSA
  4. 4.The Wallace H. Coulter School of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA

Personalised recommendations