Annals of Biomedical Engineering

, Volume 39, Issue 1, pp 337–346 | Cite as

Novel Approach for Endothelializing Vascular Devices: Understanding and Exploiting Elastin–Endothelial Interactions

  • Brent D. Wilson
  • Christopher C. Gibson
  • Lise K. Sorensen
  • Margaret Yoklavich Guilhermier
  • Melissa Clinger
  • Linda L. Kelley
  • Yan-Ting E. Shiu
  • Dean Y. Li
Article

Abstract

Elastin is an essential component of arteries which provides structural integrity and instructs smooth muscle cells to adopt a quiescent state. Despite interaction of endothelial cells with elastin in the internal elastic lamina, the potential for exploiting this interaction therapeutically has not been explored in detail. In this study, we show that tropoelastin (a precursor of elastin) stimulates endothelial cell migration and adhesion more than smooth muscle cells. The biological activity of tropoelastin on endothelial cells is contained in the VGVAPG domain and in the carboxy-terminal 17-amino acids. We show that the effects of the carboxy-terminal 17 amino acids, but not those of VGVAPG, are mediated by integrin αVβ3. We demonstrate that tropoelastin covalently linked to stainless steel disks promotes adhesion of endothelial progenitor cells and endothelial cells to the metal surfaces. The adherent cells on the tropoelastin-coated metal surfaces form monolayers that can withstand and respond to arterial shear stress. Because of the unique effects of tropoelastin on endothelial and smooth muscle cells, coating intravascular devices with tropoelastin may stimulate their endothelialization, inhibit smooth muscle hyperplasia, and improve device performance.

Keywords

Arteries Endothelium Receptors Stents Restenosis 

Supplementary material

10439_2010_142_MOESM1_ESM.pdf (59 kb)
Supplementary material 1 (PDF 59 kb)
10439_2010_142_MOESM2_ESM.doc (23 kb)
Supplementary material 2 (DOC 23 kb)

References

  1. 1.
    Aoki, J., P. W. Serruys, H. van Beusekom, A. T. Ong, E. P. McFadden, G. Sianos, W. J. van der Giessen, E. Regar, P. J. de Feyter, H. R. Davis, S. Rowland, and M. J. Kutryk. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J. Am. Coll. Cardiol. 45:1574–1579, 2005.CrossRefPubMedGoogle Scholar
  2. 2.
    Asai, J., H. Takenaka, K. F. Kusano, M. Ii, C. Luedemann, C. Curry, E. Eaton, A. Iwakura, Y. Tsutsumi, H. Hamada, S. Kishimoto, T. Thorne, R. Kishore, and D. W. Losordo. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113:2413–2424, 2006.CrossRefPubMedGoogle Scholar
  3. 3.
    Aznavoorian, S., M. L. Stracke, J. Parsons, J. McClanahan, and L. A. Liotta. Integrin alphavbeta3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways. J. Biol. Chem. 271:3247–3254, 1996.CrossRefPubMedGoogle Scholar
  4. 4.
    Bax, D. V., U. R. Rodgers, M. M. Bilek, and A. S. Weiss. Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J. Biol. Chem. 284:2816–2823, 2009.CrossRefGoogle Scholar
  5. 5.
    Blood, C. H., J. Sasse, P. Brodt, and B. R. Zetter. Identification of a tumor cell receptor for VGVAPG, an elastin-derived chemotactic peptide. J. Cell. Biol. 107:1987–1993, 1988.CrossRefPubMedGoogle Scholar
  6. 6.
    Bose, D., F. Meric-Bernstam, W. Hofstetter, D. A. Reardon, K. T. Flaherty, and L. M. Ellis. Vascular endothelial growth factor targeted therapy in the perioperative setting: implications for patient care. Lancet Oncol. 11:373–382, 2010.CrossRefPubMedGoogle Scholar
  7. 7.
    Broekelmann, T. J., B. A. Kozel, H. Ishibashi, C. C. Werneck, F. W. Keeley, L. Zhang, and R. P. Mecham. Tropoelastin interacts with cell-surface glycosaminoglycans via its COOH-terminal domain. J. Biol. Chem. 280:40939–40947, 2005.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheresh, D. A., and R. C. Spiro. Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J. Biol. Chem. 262:17703–17711, 1987.PubMedGoogle Scholar
  9. 9.
    Conway, E. M., D. Collen, and P. Carmeliet. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49:507–521, 2001.CrossRefPubMedGoogle Scholar
  10. 10.
    Daamen, W. F., J. H. Veerkamp, J. C. van Hest, and T. H. van Kuppevelt. Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    Frangos, J. A., S. G. Eskin, L. V. McIntire, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479, 1985.CrossRefPubMedGoogle Scholar
  12. 12.
    Gallant, N. D., and A. J. Garcia. Quantitative analyses of cell adhesion strength. Methods Mol. Biol. 370:83–96, 2007.CrossRefPubMedGoogle Scholar
  13. 13.
    Girard, P. R., and R. M. Nerem. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J. Cell. Physiol. 163:179–193, 1995.CrossRefPubMedGoogle Scholar
  14. 14.
    Hedman, M., J. Hartikainen, M. Syvanne, J. Stjernvall, A. Hedman, A. Kivela, E. Vanninen, H. Mussalo, E. Kauppila, S. Simula, O. Narvanen, A. Rantala, K. Peuhkurinen, M. S. Nieminen, M. Laakso, and S. Yla-Herttuala. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107:2677–2683, 2003.CrossRefPubMedGoogle Scholar
  15. 15.
    Hinek, A., D. S. Wrenn, R. P. Mecham, and S. H. Barondes. The elastin receptor: a galactoside-binding protein. Science 239:1539–1541, 1988.CrossRefPubMedGoogle Scholar
  16. 16.
    Hornebeck, W., J. M. Tixier, and L. Robert. Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin. Proc. Natl Acad. Sci. USA 83:5517–5520, 1986.CrossRefPubMedGoogle Scholar
  17. 17.
    Ii, M., H. Nishimura, A. Iwakura, A. Wecker, E. Eaton, T. Asahara, and D. W. Losordo. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation 111:1114–1120, 2005.CrossRefPubMedGoogle Scholar
  18. 18.
    Ito, S., S. Ishimaru, and S. E. Wilson. Application of coacervated alpha-elastin to arterial prostheses for inhibition of anastomotic intimal hyperplasia. ASAIO J. 44:M501–M505, 1998.CrossRefPubMedGoogle Scholar
  19. 19.
    Ito, S., S. Ishimaru, and S. E. Wilson. Effect of coacervated alpha-elastin on proliferation of vascular smooth muscle and endothelial cells. Angiology 49:289–297, 1998.CrossRefPubMedGoogle Scholar
  20. 20.
    Karnik, S. K., B. S. Brooke, A. Bayes-Genis, L. Sorensen, J. D. Wythe, R. S. Schwartz, M. T. Keating, and D. Y. Li. A critical role for elastin signaling in vascular morphogenesis and disease. Development 130:411–423, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    Karnik, S. K., J. D. Wythe, L. Sorensen, B. S. Brooke, L. D. Urness, and D. Y. Li. Elastin induces myofibrillogenesis via a specific domain, VGVAPG. Matrix Biol. 22:409–425, 2003.CrossRefPubMedGoogle Scholar
  22. 22.
    Kikkawa, Y., N. Sanzen, H. Fujiwara, A. Sonnenberg, and K. Sekiguchi. Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. J. Cell Sci. 113(Pt 5):869–876, 2000.PubMedGoogle Scholar
  23. 23.
    Kipshidze, N., G. Dangas, M. Tsapenko, J. Moses, M. B. Leon, M. Kutryk, and P. Serruys. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J. Am. Coll. Cardiol. 44:733–739, 2004.PubMedGoogle Scholar
  24. 24.
    Klomp, M., M. A. Beijk, and R. J. de Winter. Genous endothelial progenitor cell-capturing stent system: a novel stent technology. Expert Rev. Med. Dev. 6:365–375, 2009.CrossRefGoogle Scholar
  25. 25.
    McFadden, E. P., E. Stabile, E. Regar, E. Cheneau, A. T. Ong, T. Kinnaird, W. O. Suddath, N. J. Weissman, R. Torguson, K. M. Kent, A. D. Pichard, L. F. Satler, R. Waksman, and P. W. Serruys. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364:1519–1521, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Mejia, J., B. Ruzzeh, R. Mongrain, R. Leask, and O. F. Bertrand. Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments. Biomed. Eng. Online 8:8, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    Nonaka, R., S. Onoue, H. Wachi, F. Sato, Z. Urban, B. C. Starcher, and Y. Seyama. DANCE/fibulin-5 promotes elastic fiber formation in a tropoelastin isoform-dependent manner. Clin. Biochem. 42:713–721, 2009.CrossRefPubMedGoogle Scholar
  28. 28.
    Park, C. C., J. C. Morel, M. A. Amin, M. A. Connors, L. A. Harlow, and A. E. Koch. Evidence of IL-18 as a novel angiogenic mediator. J. Immunol. 167:1644–1653, 2001.PubMedGoogle Scholar
  29. 29.
    Plow, E. F., T. A. Haas, L. Zhang, J. Loftus, and J. W. Smith. Ligand binding to integrins. J. Biol. Chem. 275:21785–21788, 2000.CrossRefPubMedGoogle Scholar
  30. 30.
    Ramirez, F., and H. C. Dietz. Extracellular microfibrils in vertebrate development and disease processes. J. Biol. Chem. 284:14677–14681, 2009.CrossRefPubMedGoogle Scholar
  31. 31.
    Rodgers, U. R., and A. S. Weiss. Integrin alpha v beta 3 binds a unique non-RGD site near the C-terminus of human tropoelastin. Biochimie 86:173–178, 2004.CrossRefPubMedGoogle Scholar
  32. 32.
    Rosenbloom, J., W. R. Abrams, and R. Mecham. Extracellular matrix 4: the elastic fiber. FASEB J. 7:1208–1218, 1993.PubMedGoogle Scholar
  33. 33.
    Shiu, Y. T., S. Li, W. A. Marganski, S. Usami, M. A. Schwartz, Y. L. Wang, M. Dembo, and S. Chien. Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys. J. 86:2558–2565, 2004.CrossRefPubMedGoogle Scholar
  34. 34.
    Spencer, J. A., S. L. Hacker, E. C. Davis, R. P. Mecham, R. H. Knutsen, D. Y. Li, R. D. Gerard, J. A. Richardson, E. N. Olson, and H. Yanagisawa. Altered vascular remodeling in fibulin-5-deficient mice reveals a role of fibulin-5 in smooth muscle cell proliferation and migration. Proc. Natl Acad. Sci. USA 102:2946–2951, 2005.CrossRefPubMedGoogle Scholar
  35. 35.
    Stracke, M. L., J. D. Engel, L. W. Wilson, M. M. Rechler, L. A. Liotta, and E. Schiffmann. The type I insulin-like growth factor receptor is a motility receptor in human melanoma cells. J. Biol. Chem. 264:21544–21549, 1989.PubMedGoogle Scholar
  36. 36.
    Sutherland, D. R., L. Anderson, M. Keeney, R. Nayar, and I. Chin-Yee. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J. Hematother. 5:213–226, 1996.PubMedGoogle Scholar
  37. 37.
    Swanson, N., K. Hogrefe, Q. Javed, N. Malik, and A. H. Gershlick. Vascular endothelial growth factor (VEGF)-eluting stents: in vivo effects on thrombosis, endothelialization and intimal hyperplasia. J. Invasive Cardiol. 15:688–692, 2003.PubMedGoogle Scholar
  38. 38.
    Tzima, E., M. A. del Pozo, S. J. Shattil, S. Chien, and M. A. Schwartz. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20:4639–4647, 2001.CrossRefPubMedGoogle Scholar
  39. 39.
    Wachi, H., R. Nonaka, F. Sato, K. Shibata-Sato, M. Ishida, S. Iketani, I. Maeda, K. Okamoto, Z. Urban, S. Onoue, and Y. Seyama. Characterization of the molecular interaction between tropoelastin and DANCE/fibulin-5. J. Biochem. 143:633–639, 2008.CrossRefPubMedGoogle Scholar
  40. 40.
    Williamson, M. R., A. Shuttleworth, A. E. Canfield, R. A. Black, and C. M. Kielty. The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment. Biomaterials 28:5307–5318, 2007.CrossRefPubMedGoogle Scholar
  41. 41.
    Yin, Y., S. G. Wise, N. J. Nosworthy, A. Waterhouse, D. V. Bax, H. Youssef, M. J. Byrom, M. M. Bilek, D. R. McKenzie, A. S. Weiss, and M. K. Ng. Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials 30:1675–1681, 2009.CrossRefPubMedGoogle Scholar
  42. 42.
    Yoshigi, M., E. B. Clark, and H. J. Yost. Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing. Cytometry A 55:109–118, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Brent D. Wilson
    • 1
    • 2
    • 3
  • Christopher C. Gibson
    • 3
    • 4
  • Lise K. Sorensen
    • 3
  • Margaret Yoklavich Guilhermier
    • 6
  • Melissa Clinger
    • 6
  • Linda L. Kelley
    • 5
  • Yan-Ting E. Shiu
    • 2
    • 4
  • Dean Y. Li
    • 1
    • 2
    • 3
    • 7
  1. 1.Division of CardiologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Internal MedicineUniversity of UtahSalt Lake CityUSA
  3. 3.Program in Molecular MedicineUniversity of UtahSalt Lake CityUSA
  4. 4.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  5. 5.Division of HematologyUniversity of UtahSalt Lake CityUSA
  6. 6.OrbusNeich Medical, IncorporatedFort LauderdaleUSA
  7. 7.Eccles Institute of Human GeneticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations