Annals of Biomedical Engineering

, Volume 39, Issue 1, pp 347–358

Three-Dimensional Hemodynamics in the Human Pulmonary Arteries Under Resting and Exercise Conditions

  • Beverly T. Tang
  • Tim A. Fonte
  • Frandics P. Chan
  • Philip S. Tsao
  • Jeffrey A. Feinstein
  • Charles A. Taylor
Article

Abstract

The biomechanical forces associated with blood flow have been shown to play a role in pulmonary vascular cell health and disease. Therefore, the quantification of human pulmonary artery hemodynamic conditions under resting and exercise states can be useful in investigating the physiology of disease development and treatment outcomes. In this study, a combined magnetic resonance imaging and computational fluid dynamics approach was used to quantify pulsatile flow fields, wall shear stress (WSS), oscillations in WSS (OSI), and energy efficiency in six subject-specific models of the human pulmonary vasculature with high spatial and temporal resolution. Averaging over all subjects, WSS was found to increase from 19.8 ± 4.0 to 51.8 ± 6.7 dynes/cm2, and OSI was found to decrease from 0.094 ± 0.016 to 0.081 ± 0.015 in the proximal pulmonary arteries between rest and exercise conditions (p < 0.05). These findings demonstrate the localized, biomechanical effects of exercise. Furthermore, an average decrease of 10% in energy efficiency was noted between rest and exercise. These data indicate the amount of energy dissipation that typically occurs with exercise and may be useful in future surgical planning applications.

Keywords

Pulmonary vasculature Blood flow Shear stress Magnetic resonance imaging Finite-element analysis 

References

  1. 1.
    Botney, M. D. Role of hemodynamics in pulmonary vascular remodeling: implications for primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 159:361–364, 1999.PubMedGoogle Scholar
  2. 2.
    Brooks, A. N., and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32:199–259, 1982.CrossRefGoogle Scholar
  3. 3.
    Cheng, C. P., R. J. Herfkens, A. L. Lightner, C. A. Taylor, and J. A. Feinstein. Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise. Am. J. Physiol. Heart Circ. Physiol. 287:H921–H926, 2004.CrossRefPubMedGoogle Scholar
  4. 4.
    Cheng, C. P., R. J. Herfkens, C. A. Taylor, and J. A. Feinstein. Proximal pulmonary artery blood flow characteristics in healthy subjects measured in an upright posture using MRI: the effects of exercise and age. J. Magn. Reson. Imaging 21:752–758, 2005.CrossRefPubMedGoogle Scholar
  5. 5.
    de Leval, M. R., G. Dubini, F. Migliavacca, H. Jalali, G. Camporini, A. Redington, and R. Pietrabissa. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J. Thorac. Cardiovasc. Surg. 111:502–513, 1996.CrossRefPubMedGoogle Scholar
  6. 6.
    Draney, M. T., M. A. Alley, B. T. Tang, N. M. Wilson, R. J. Herfkens, and C. A. Taylor. Importance of 3D nonlinear gradient corrections for quantitative analysis of 3D MR angiographic data. Proceedings of the International Society for Magnetic Resonance in Medicine, Tenth Scientific Meeting and Exposition, 2002.Google Scholar
  7. 7.
    Elkins, R. C., and W. R. Milnor. Pulmonary vascular response to exercise in the dog. Circ. Res. 29:591–599, 1971.PubMedGoogle Scholar
  8. 8.
    Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706, 2006.CrossRefGoogle Scholar
  9. 9.
    Gan, C. T., J. W. Lankhaar, N. Westerhof, J. T. Marcus, A. Becker, J. W. Twisk, A. Boonstra, P. E. Postmus, and A. Vonk-Noordegraaf. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132:1906–1912, 2007.CrossRefPubMedGoogle Scholar
  10. 10.
    He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.CrossRefPubMedGoogle Scholar
  11. 11.
    Jansen, K. E., C. H. Whiting, and G. M. Hulbert. A generalized-[alpha] method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190:305–319, 2000.CrossRefGoogle Scholar
  12. 12.
    Johnson, L. R., J. W. Rush, J. R. Turk, E. M. Price, and M. H. Laughlin. Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries. J. Appl. Physiol. 90:1102–1110, 2001.CrossRefPubMedGoogle Scholar
  13. 13.
    Khunatorn, Y., S. Mahalingam, C. G. DeGroff, and R. Shandas. Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. J. Biomech. Eng. 124:364–377, 2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Khunatorn, Y., R. Shandas, C. DeGroff, and S. Mahalingam. Comparison of in vitro velocity measurements in a scaled total cavopulmonary connection with computational predictions. Ann. Biomed. Eng. 31:810–822, 2003.CrossRefPubMedGoogle Scholar
  15. 15.
    Ku, J. P., M. T. Draney, F. R. Arko, W. A. Lee, F. P. Chan, N. J. Pelc, C. K. Zarins, and C. A. Taylor. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann. Biomed. Eng. 30:743–752, 2002.CrossRefPubMedGoogle Scholar
  16. 16.
    Kulik, T. J., J. L. Bass, B. P. Fuhrman, J. H. Moller, and J. E. Lock. Exercise induced pulmonary vasoconstriction. Br. Heart J. 50:59–64, 1983.CrossRefPubMedGoogle Scholar
  17. 17.
    Le Cras, T. D., R. C. Tyler, M. P. Horan, K. G. Morris, R. M. Tuder, I. F. McMurtry, R. A. Johns, and S. H. Abman. Effects of chronic hypoxia and altered hemodynamics on endothelial nitric oxide synthase expression in the adult rat lung. J. Clin. Invest. 101:795–801, 1998.CrossRefPubMedGoogle Scholar
  18. 18.
    Marsden, A. L., I. E. Vignon-Clementel, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 35:250–263, 2007.CrossRefPubMedGoogle Scholar
  19. 19.
    Migliavacca, F., G. Dubini, E. L. Bove, and M. R. de Leval. Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J. Biomech. Eng. 125:805–813, 2003.CrossRefPubMedGoogle Scholar
  20. 20.
    Morgan, V. L., R. J. Roselli, and C. H. Lorenz. Normal three-dimensional pulmonary artery flow determined by phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 26:557–566, 1998.CrossRefPubMedGoogle Scholar
  21. 21.
    Morrison, T. M., G. Choi, C. K. Zarins, and C. A. Taylor. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J. Vasc. Surg. 49:1029–1036, 2009.CrossRefPubMedGoogle Scholar
  22. 22.
    Muller, J., O. Sahni, X. Li, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Anisotropic adaptive finite element method for modelling blood flow. Comput. Methods Biomech. Biomed. Eng. 8:295–305, 2005.CrossRefGoogle Scholar
  23. 23.
    Niezen, R. A., J. Doornbos, E. E. van der Wall, and A. de Roos. Measurement of aortic and pulmonary flow with MRI at rest and during physical exercise. J. Comput. Assist. Tomogr. 22:194–201, 1998.CrossRefPubMedGoogle Scholar
  24. 24.
    Orlando, W., R. Shandas, and C. DeGroff. Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Comput. Methods Programs Biomed. 81:220–227, 2006.CrossRefPubMedGoogle Scholar
  25. 25.
    Perktold, K., R. Peter, M. Resch, and G. Langs. Pulsatile non-Newtonian flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. J. Biomed. Eng. 13:507–515, 1991.CrossRefPubMedGoogle Scholar
  26. 26.
    Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.CrossRefPubMedGoogle Scholar
  27. 27.
    Sahni, O., J. Muller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195:5634–5655, 2006.CrossRefGoogle Scholar
  28. 28.
    Shikata, Y., A. Rios, K. Kawkitinarong, N. DePaola, J. G. Garcia, and K. G. Birukov. Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp. Cell Res. 304:40–49, 2005.CrossRefPubMedGoogle Scholar
  29. 29.
    Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.CrossRefPubMedGoogle Scholar
  30. 30.
    Taylor, C. A., C. P. Cheng, L. A. Espinosa, B. T. Tang, D. Parker, and R. J. Herfkens. In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann. Biomed. Eng. 30:402–408, 2002.CrossRefPubMedGoogle Scholar
  31. 31.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158:155–196, 1998.CrossRefGoogle Scholar
  32. 32.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann. Biomed. Eng. 26:1–14, 1998.CrossRefGoogle Scholar
  33. 33.
    Vignon-Clementel, I. E., C. Alberto Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796, 2006.CrossRefGoogle Scholar
  34. 34.
    Wang, K. C., R. W. Dutton, and C. A. Taylor. Level sets for vascular model construction in computational hemodynamics. IEEE Eng. Med. Biol. 18:33–39, 1999.CrossRefGoogle Scholar
  35. 35.
    Whiting, C. H., and K. E. Jansen. A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35:93–116, 2001.CrossRefGoogle Scholar
  36. 36.
    Wilson, N. M. Geometric algorithms and software architecture for computational prototyping: applications in vascular surgery and MEMS. Stanford, CA: Department of Mechanical Engineering, Stanford University, 2002.Google Scholar
  37. 37.
    Wilson, N. M., K. Wang, R. W. Dutton, and C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456, 2001.CrossRefGoogle Scholar
  38. 38.
    Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Beverly T. Tang
    • 1
  • Tim A. Fonte
    • 1
  • Frandics P. Chan
    • 2
  • Philip S. Tsao
    • 3
  • Jeffrey A. Feinstein
    • 4
    • 5
  • Charles A. Taylor
    • 1
    • 5
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of RadiologyStanford UniversityStanfordUSA
  3. 3.Department of MedicineStanford UniversityStanfordUSA
  4. 4.Department of Pediatrics – CardiologyStanford UniversityStanfordUSA
  5. 5.Department of BioengineeringStanford UniversityStanfordUSA

Personalised recommendations