Annals of Biomedical Engineering

, Volume 38, Issue 12, pp 3706–3723 | Cite as

Effects of Shear Forces and Pressure on Blood Vessel Function and Metabolism in a Perfusion Bioreactor

  • Markus Hoenicka
  • Ludwig Wiedemann
  • Thomas Puehler
  • Stephan Hirt
  • Dietrich E. Birnbaum
  • Christof Schmid


Bovine saphenous veins (BSV) were incubated in a perfusion bioreactor to study vessel wall metabolism and wall structure under tissue engineering conditions. Group 1 vessels were perfused for 4 or 8 days. The viscosity of the medium was increased to that of blood in group 2. Group 3 vessels were additionally strained with luminal pressure. Groups 1-d through 3-d were similar except that BSV were endothelium-denuded before perfusion. Groups 1-a through 3-a used native vessels at elevated flow rates. Group 3 vessels responded significantly better to noradrenaline on day 4, whereas denuded vessels showed attenuated responses (p < 0.001). Tetrazolium dye reduction did not depend on perfusion conditions or time except for denuded vessels. pO2 gradients across the vessels were independent of time and significantly higher in group 2 (p < 0.001). BSV converted glucose stoichiometrically to lactate except vessels of groups 3, 1-d, and 3-d which released more lactate than glucose could supply (p < 0.001). Group 1 vessels as well as all vessels perfused with elevated flow rates showed a loss of endothelial cells after 4 days, whereas group 2 and 3 vessels retained most of the endothelium. These data suggest that vessel metabolism was not limited by oxygen supply. Shear forces did not affect glucose metabolism but increased oxygen consumption and endothelial cell survival. Luminal pressure caused the utilization of energy sources other than glucose, as long as the endothelium was intact. Therefore, vessel metabolism needs to be monitored during tissue engineering procedures which challenge the constructs with mechanical stimuli.


Tissue engineering Endothelium Tetrazolium dye Apoptosis 


  1. 1.
    Aoki, J., A. T. L. Ong, C. A. Arampatzis, M. Vijaykumar, G. A. Rodriguez Granillo, C. M. C. Disco, and P. W. Serruys. Comparison of three-year outcomes after coronary stenting versus coronary artery bypass grafting in patients with multivessel coronary disease, including involvement of the left anterior descending coronary artery proximally (a subanalysis of the arterial revascularization therapies study trial). Am. J. Cardiol. 94:627–631, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Berridge, M. V., P. M. Herst, and A. S. Tan. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11:127–152, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Busse, R., and I. Fleming. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol. Sci. 24:24–29, 2003.CrossRefPubMedGoogle Scholar
  4. 4.
    Chace, K. V., and R. Odessey. The utilization by rabbit aorta of carbohydrates, fatty acids, ketone bodies, and amino acids as substrates for energy production. Circ. Res. 48:850–858, 1981.PubMedGoogle Scholar
  5. 5.
    Clerin, V., R. J. Gusic, J. O’Brien, P. M. Kirshbom, R. J. Myung, J. W. Gaynor, and K. J. Gooch. Mechanical environment, donor age, and presence of endothelium interact to modulate porcine artery viability ex vivo. Ann. Biomed. Eng. 30:1117–1127, 2002.CrossRefPubMedGoogle Scholar
  6. 6.
    Denis, C. V. Molecular and cellular biology of von Willebrand factor. Int. J. Hematol. 75:3–8, 2002.CrossRefPubMedGoogle Scholar
  7. 7.
    Engbers-Buijtenhuijs, P., L. Buttafoco, A. A. Poot, P. J. Dijkstra, R. A. I. De Vos, L. M. T. Sterk, R. H. Geelkerken, I. Vermes, and J. Feijen. Biological characterisation of vascular grafts cultured in a bioreactor. Biomaterials 27:2390–2397, 2006.CrossRefPubMedGoogle Scholar
  8. 8.
    Gaucher, C., C. Devaux, C. Boura, P. Lacolley, J. Stoltz, and P. Menu. In vitro impact of physiological shear stress on endothelial cells gene expression profile. Clin. Hemorheol. Microcirc. 37:99–107, 2007.PubMedGoogle Scholar
  9. 9.
    Glacken, M. W., R. J. Fleischaker, and A. J. Sinskey. Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 28:1376–1389, 1986.CrossRefPubMedGoogle Scholar
  10. 10.
    Gruberg, L., S. Milo, M. Ben Tzvi, C. Lotan, G. Merin, S. Braun, R. Mohr, D. Tzivoni, D. Bitran, and R. Beyar. Comparison of bypass surgery and stenting for the treatment of multivessel disease: results from the ARTS trial in Israel. Isr. Med. Assoc. J. 5:539–542, 2003.PubMedGoogle Scholar
  11. 11.
    Gusic, R. J., R. Myung, M. Petko, J. W. Gaynor, and K. J. Gooch. Shear stress and pressure modulate saphenous vein remodeling ex vivo. J. Biomech. 38:1760–1769, 2005.CrossRefPubMedGoogle Scholar
  12. 12.
    Hannan, E. L., M. J. Racz, G. Walford, R. H. Jones, T. J. Ryan, E. Bennett, A. T. Culliford, O. W. Isom, J. P. Gold, and E. A. Rose. Long-term outcomes of coronary-artery bypass grafting versus stent implantation. N. Engl. J. Med. 352:2174–2183, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    He, G. W. Arterial grafts for coronary artery bypass grafting: biological characteristics, functional classification, and clinical choice. Ann. Thorac. Surg. 67:277–284, 1999.CrossRefPubMedGoogle Scholar
  14. 14.
    Hellstrand, P., B. Johansson, and K. Norberg. Mechanical, electrical, and biochemical effects of hypoxia and substrate removal on spontaneously active vascular smooth muscle. Acta Physiol. Scand. 100:69–83, 1977.CrossRefPubMedGoogle Scholar
  15. 15.
    Hoenicka, M., K. Lehle, V. R. Jacobs, F. X. Schmid, and D. E. Birnbaum. Properties of the human umbilical vein as a living scaffold for a tissue-engineered vessel graft. Tissue Eng. 13:219–229, 2007.CrossRefPubMedGoogle Scholar
  16. 16.
    Hoenig, M. R., G. R. Campbell, and J. H. Campbell. Vascular grafts and the endothelium. Endothelium 13:385–401, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Lawrence, A. R., and K. J. Gooch. Transmural pressure and axial loading interactively regulate arterial remodeling ex vivo. Am. J. Physiol. Heart Circ. Physiol. 297:H475–H484, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Lindqvist, A., K. Dreja, K. Swärd, and P. Hellstrand. Effects of oxygen tension on energetics of cultured vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 283:H110–H117, 2002.PubMedGoogle Scholar
  19. 19.
    Malda, J., T. J. Klein, and Z. Upton. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 13:2153–2162, 2007.CrossRefPubMedGoogle Scholar
  20. 20.
    Mamode, N., and R.N. Scott. Graft type for femoro-popliteal bypass surgery. Cochrane Database Syst. Rev. CD001487, 1999.Google Scholar
  21. 21.
    Marshall, N. J., C. J. Goodwin, and S. J. Holt. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul. 5:69–84, 1995.PubMedGoogle Scholar
  22. 22.
    Mazzucotelli, J. P., L. Lecouls, A. Hamzaoui, C. Philippon, E. Bizouard, M. Moczar, and D. Y. Loisance. The superiority of hollow fiber membrane over bubble oxygenator in a perfusion circuit for the evaluation of small caliber endothelialized arterial prostheses. Artif. Organs 20:30–36, 1996.CrossRefPubMedGoogle Scholar
  23. 23.
    McAllister, T. N., M. Maruszewski, S. A. Garrido, W. Wystrychowski, N. Dusserre, A. Marini, K. Zagalski, A. Fiorillo, H. Avila, X. Manglano, J. Antonelli, A. Kocher, M. Zembala, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446, 2009.CrossRefPubMedGoogle Scholar
  24. 24.
    Morrison, E. S., R. F. Scott, M. Kroms, and J. Frick. Glucose degradation in normal and atherosclerotic aortic intima-media. Atherosclerosis 16:175–184, 1972.CrossRefPubMedGoogle Scholar
  25. 25.
    Nichol, J. W., M. Petko, R. J. Myung, J. W. Gaynor, and K. J. Gooch. Hemodynamic conditions alter axial and circumferential remodeling of arteries engineered ex vivo. Ann. Biomed. Eng. 33:721–732, 2005.CrossRefPubMedGoogle Scholar
  26. 26.
    Obradovic, B., R. L. Carrier, G. Vunjak-Novakovic, and L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63:197–205, 1999.CrossRefPubMedGoogle Scholar
  27. 27.
    Paszkowiak, J. J., and A. Dardik. Arterial wall shear stress: observations from the bench to the bedside. Vasc. Endovascular Surg. 37:47–57, 2003.CrossRefPubMedGoogle Scholar
  28. 28.
    Paul R. J. Chemical energetics of vascular smooth muscle. In: Vascular Smooth Muscle, edited by D. F. Bohr, A. P. Somlyo, and H. V. J. Sparks. Bethesda, MD: American Physiology Society, 1980, pp. 201–235.Google Scholar
  29. 29.
    Perkins, J. P. Catecholamine-induced modification of the functional state of [beta]-adrenergic receptors. TIPS 2:326–328, 1981.Google Scholar
  30. 30.
    Rashid, S. T., H. J. Salacinski, B. J. Fuller, G. Hamilton, and A. M. Seifalian. Engineering of bypass conduits to improve patency. Cell Prolif. 37:351–366, 2004.CrossRefPubMedGoogle Scholar
  31. 31.
    Waybill, P. N., and L. J. Hopkins. Arterial and venous smooth muscle cell proliferation in response to co-culture with arterial and venous endothelial cells. J. Vasc. Interv. Radiol. 10:1051–1057, 1999.CrossRefPubMedGoogle Scholar
  32. 32.
    Wayman, B. H., W. R. Taylor, A. Rachev, and R. P. Vito. Arteries respond to independent control of circumferential and shear stress in organ culture. Ann. Biomed. Eng. 36:673–684, 2008.CrossRefPubMedGoogle Scholar
  33. 33.
    Wechezak, A. R., D. E. Coan, R. F. Viggers, and L. R. Sauvage. Dextran increases survival of subconfluent endothelial cells exposed to shear stress. Am. J. Physiol. 264:H520–H525, 1993.PubMedGoogle Scholar
  34. 34.
    Wong, A. P., N. Nili, and B. H. Strauss. In vitro differences between venous and arterial-derived smooth muscle cells: potential modulatory role of decorin. Cardiovasc. Res. 65:702–710, 2005.CrossRefPubMedGoogle Scholar
  35. 35.
    Yow, K., J. Ingram, S. A. Korossis, E. Ingham, and S. Homer-Vanniasinkam. Tissue engineering of vascular conduits. Br. J. Surg. 93:652–661, 2006.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang, W. J., W. Liu, L. Cui, and Y. Cao. Tissue engineering of blood vessel. J. Cell. Mol. Med. 11:945–957, 2007.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang, X., X. Wang, V. Keshav, X. Wang, J. T. Johanas, G. G. Leisk, and D. L. Kaplan. Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials 30:3213–3223, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Markus Hoenicka
    • 1
  • Ludwig Wiedemann
    • 2
  • Thomas Puehler
    • 1
  • Stephan Hirt
    • 1
  • Dietrich E. Birnbaum
    • 1
  • Christof Schmid
    • 1
  1. 1.Department of Cardiothoracic SurgeryUniversity of Regensburg Medical CenterRegensburgGermany
  2. 2.Medizinische Klinik IIKlinikum LandshutLandshutGermany

Personalised recommendations