Annals of Biomedical Engineering

, Volume 38, Issue 12, pp 3605–3617 | Cite as

Biomechanical and Microstructural Properties of Common Carotid Arteries from Fibulin-5 Null Mice

  • William Wan
  • Hiromi Yanagisawa
  • Rudolph L. GleasonJr.Email author


Alteration in the mechanical properties of arteries occurs with aging and disease, and arterial stiffening is a key risk factor for subsequent cardiovascular events. Arterial stiffening is associated with the loss of functional elastic fibers and increased collagen content in the wall of large arteries. Arterial mechanical properties are controlled largely by the turnover and reorganization of key structural proteins and cells, a process termed growth and remodeling. Fibulin-5 (fbln5) is a microfibrillar protein that binds tropoelastin, interacts with integrins, and localizes to elastin fibers; tropoelastin and microfibrillar proteins constitute functional elastic fibers. We performed biaxial mechanical testing and confocal imaging of common carotid arteries (CCAs) from fibulin-5 null mice (fbln5 /) and littermate controls (fbln5 +/+) to characterize the mechanical behavior and microstructural content of these arteries; mechanical testing data were fit to a four-fiber family constitutive model. We found that CCAs from fbln5 / mice exhibited lower in vivo axial stretch and lower in vivo stresses while maintaining a similar compliance over physiological pressures compared to littermate controls. Specifically, for fbln5 / the axial stretch λ = 1.41 ± 0.07, the circumferential stress σ θ  = 101 ± 32 kPa, and the axial stress σ z  = 74 ± 28 kPa; for fbln5 +/+ λ = 1.64 ± 0.03, σ θ  = 194 ± 38 kPa, and σ z  = 159 ± 29 kPa. Structurally, CCAs from fbln5 / mice lack distinct functional elastic fibers defined by the lamellar structure of alternating layers of smooth muscle cells and elastin sheets. These data suggest that structural differences in fbln5 / arteries correlate with significant differences in mechanical properties. Despite these significant differences fbln5 / CCAs exhibited nearly normal levels of cyclic strain over the cardiac cycle.


Vascular mechanics Extracellular matrix Arterial stiffening Mechanobiology Fibulin-5 



We gratefully acknowledge that this research was funded by grants from the NIH (R21-HL085822 and T32-GM008433).


  1. 1.
    Arnet, D. K., G. W. Evans, and W. A. Riley. Arterial stiffness: a new cardiovascular risk factor? Am. J. Epidemiol. 140:669–682, 1994.Google Scholar
  2. 2.
    Baek, S., R. Gleason, K. Rajagopal, and J. Humphrey. Theory of small on large: potential utility in computations of fluid–solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196(31–32):3070–3078, 2007.CrossRefGoogle Scholar
  3. 3.
    Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108(2):189–192, 1986.CrossRefPubMedGoogle Scholar
  4. 4.
    Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3):519–560, 1995.PubMedGoogle Scholar
  5. 5.
    Dobrin, P. B. Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus. J. Biomech. 19(5):351–358, 1986.CrossRefPubMedGoogle Scholar
  6. 6.
    Dye, W. W., R. L. Gleason, E. Wilson, and J. D. Humphrey. Altered biomechanical properties of carotid arteries in two mouse models of muscular dystrophy. J. Appl. Physiol. 103(2):664–672, 2007.CrossRefPubMedGoogle Scholar
  7. 7.
    Dzau, V. J., and G. H. Gibbons. Vascular remodeling: mechanisms and implications. J. Cardiovasc. Pharmacol. 21(Suppl 1):S1–S5, 1993.CrossRefPubMedGoogle Scholar
  8. 8.
    Eberth, J. F., A. I. Taucer, E. Wilson, and J. D. Humphrey. Mechanics of carotid arteries in a mouse model of Marfan Syndrome. Ann. Biomed. Eng. 37(6):1093–1104, 2009.CrossRefPubMedGoogle Scholar
  9. 9.
    Fillinger, M. F., J. Racusin, R. K. Baker, J. L. Cronenwett, A. Teutelink, M. L. Schermerhorn, R. M. Zwolak, R. J. Powell, D. B. Walsh, and E. M. Rzucidlo. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J. Vasc. Surg. 39(6):1243–1252, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. Springer, 1993.Google Scholar
  11. 11.
    Gleason, R. L., S. P. Gray, E. Wilson, and J. D. Humphrey. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J. Biomech. Eng. 126(6):787–795, 2004.CrossRefPubMedGoogle Scholar
  12. 12.
    Hansen, L., W. Wan, and R. L. Gleason. Microstructurally-motivated constitutive modeling of mouse arteries cultured under altered axial stretch. J. Biomech. Eng. 131(10):11, 2009.CrossRefGoogle Scholar
  13. 13.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.CrossRefGoogle Scholar
  14. 14.
    Holzapfel, G., T. Gasser, and R. Ogden. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J. Biomech. Eng. 126(2):264, 2004.CrossRefPubMedGoogle Scholar
  15. 15.
    Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, Organs. New York: Springer-Verlag, 2002.Google Scholar
  16. 16.
    Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3):407–430, 2002.CrossRefGoogle Scholar
  17. 17.
    Jackson, Z. S., D. Dajnowiec, A. I. Gotlieb, and B. L. Langille. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler. Thromb. Vasc. Biol. 25(5):957–962, 2005.CrossRefPubMedGoogle Scholar
  18. 18.
    Jackson, Z. S., A. I. Gotlieb, and B. L. Langille. Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8):918–925, 2002.CrossRefPubMedGoogle Scholar
  19. 19.
    Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239(1):H14–H21, 1980.PubMedGoogle Scholar
  20. 20.
    Kobayashi, N., G. Kostka, J. H. Garbe, D. R. Keene, H. P. Bachinger, F. G. Hanisch, D. Markova, T. Tsuda, R. Timpl, M. L. Chu, and T. Sasaki. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J. Biol. Chem. 282(16):11805–11816, 2007.CrossRefPubMedGoogle Scholar
  21. 21.
    Kowal, R. C., J. A. Richardson, J. M. Miano, and E. N. Olson. EVEC, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circ. Res. 84:1166–1176, 1999.PubMedGoogle Scholar
  22. 22.
    Martinez-Lemus, L. A., M. A. Hill, S. S. Bolz, U. Pohl, and G. A. Meininger. Acute mechanoadaptation of vascular smooth muscle cells in response to continuous arteriolar vasoconstriction: implications for functional remodeling. FASEB J. 18(6):708–710, 2004.PubMedGoogle Scholar
  23. 23.
    Matsumoto, T., and K. Hayashi. Stress and strain distribution in hypertensive and normotensive rat aorta considering residual strain. J. Biomech. Eng. 118(1):62–73, 1996.CrossRefPubMedGoogle Scholar
  24. 24.
    Nakamura, T., P. R. Lozano, Y. Ikeda, Y. Iwanaga, A. Hinek, S. Minamisawa, C. F. Cheng, K. Kobuke, N. Dalton, Y. Takada, K. Tashiro, J. Ross, Jr, T. Honjo, and K. R. Chien. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415(6868):171–175, 2002.CrossRefPubMedGoogle Scholar
  25. 25.
    Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35(8):681–690, 1957.PubMedGoogle Scholar
  26. 26.
    Spencer, A. J. M. Constitutive theory for strongly anisotropic solids. In: Continuum Theory of the Mechanics of Fibre-Reinforced Composites, CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences, edited by A. J. M. Spencer. Springer-Verlag, Wien, 1984, pp. 1–32.Google Scholar
  27. 27.
    Takamizawa, K., and K. Hayashi. Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20(1):7, 1987.CrossRefPubMedGoogle Scholar
  28. 28.
    Van Loon, P. Length–force and volume–pressure relationships of arteries. Biorheology 14(4):181–201, 1977.PubMedGoogle Scholar
  29. 29.
    Wagenseil, J. E., C. H. Ciliberto, R. H. Knutsen, M. A. Levy, A. Kovacs, and R. P. Mecham. Reduced vessel elasticity alters cardiovascular structure and function in newborn mice. Circ. Res. 104(10):1217–1224, 2009.CrossRefPubMedGoogle Scholar
  30. 30.
    Wagenseil, J. E., N. L. Nerurkar, R. H. Knutsen, R. J. Okamoto, D. Y. Li, and R. P. Mecham. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am. J. Physiol. Heart Circ. Physiol. 289(3):H1209–H1217, 2005.CrossRefPubMedGoogle Scholar
  31. 31.
    Wong, L. C., and B. L. Langille. Developmental remodeling of the internal elastic lamina of rabbit arteries: effect of blood flow. Circ. Res. 78(5):799–805, 1996.PubMedGoogle Scholar
  32. 32.
    Yanagisawa, H., E. C. Davis, B. C. Starcher, T. Ouchi, M. Yanagisawa, J. A. Richardson, and E. N. Olson. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415(6868):168–171, 2002.CrossRefPubMedGoogle Scholar
  33. 33.
    Zoumi, A., A. Yeh, and B. J. Tromberg. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99(17):11014–11019, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • William Wan
    • 1
  • Hiromi Yanagisawa
    • 4
  • Rudolph L. GleasonJr.
    • 1
    • 2
    • 3
    Email author
  1. 1.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.The Petite Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA
  4. 4.The University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations