Annals of Biomedical Engineering

, Volume 38, Issue 12, pp 3674–3687

Right Ventricular Inefficiency in Repaired Tetralogy of Fallot: Proof of Concept for Energy Calculations From Cardiac MRI Data

  • Ashish Das
  • Rupak K. Banerjee
  • William M. Gottliebson
Article

Abstract

Repaired tetralogy of Fallot (rTOF) patients develop right ventricular (RV) dilatation and dysfunction. To prevent their demise, pulmonary valve replacement is necessary, though appropriate timing for it is challenged by a paucity of reliable diagnostic parameters. In this pilot study, we hypothesized that stroke work (SW) and energy calculations would delineate the inefficiency of RV performance in rTOF. RV SW was calculated for both an rTOF and a normal subject by utilizing RV pressure and volume measurements obtained during cardiac catheterization and MRI studies. Energy transfer rate and ratio were computed at the main pulmonary artery (PA). Compared to the normal RV, the rTOF RV had higher operating pressure, lower computed SW (0.078 J vs. 0.115 J for normal), and higher negative energy transfer at the PA (0.044 J vs. 0.002 J for normal). Furthermore, the energy transfer ratio was nearly twice as high for the normal RV (1.06) as for the rTOF RV (0.56). RV SW and energy transfer ratio delineate important operational efficiency differences in blood flow from the RV to the PA between rTOF and normal subjects. Our pilot data suggest that the rTOF RV is significantly less efficient than normal.

Keywords

Right ventricular stroke work Tetralogy of Fallot Pulmonary insufficiency Phase contrast MRI 

References

  1. 1.
    Akins, C. W., B. Travis, and A. P. Yoganathan. Energy loss for evaluating heart valve performance. J. Thorac. Cardiovasc. Surg. 136:820–833, 2008.CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson, R. H., and P. M. Weinberg. The clinical anatomy of tetralogy of fallot. Cardiol. Young 15(Suppl 1):38–47, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Banerjee, R. K., L. H. Back, M. R. Back, and Y. I. Cho. Physiological flow simulation in residual human stenoses after coronary angioplasty. J. Biomech. Eng. 122:310–320, 2000.CrossRefPubMedGoogle Scholar
  4. 4.
    Bazilevs, Y., M.-C. Hsu, D. J. Benson, S. Sankaran, and A. L. Marsden. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput. Mech. 45:77–89, 2009.CrossRefGoogle Scholar
  5. 5.
    Bove, E. L., M. R. de Leval, F. Migliavacca, R. Balossino, and G. Dubini. Toward optimal hemodynamics: computer modeling of the Fontan circuit. Pediatr. Cardiol. 28:477–481, 2007.CrossRefPubMedGoogle Scholar
  6. 6.
    Burkhoff, D., I. Mirsky, and H. Suga. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 289:H501–H512, 2005.CrossRefPubMedGoogle Scholar
  7. 7.
    Chatzimavroudis, G. P., J. N. Oshinski, R. H. Franch, P. G. Walker, A. P. Yoganathan, and R. I. Pettigrew. Evaluation of the precision of magnetic resonance phase velocity mapping for blood flow measurements. J. Cardiovasc. Magn. Reson. 3:11–19, 2001.CrossRefPubMedGoogle Scholar
  8. 8.
    Chern, M. J., M. T. Wu, and H. L. Wang. Numerical investigation of regurgitation phenomena in pulmonary arteries of Tetralogy of Fallot patients after repair. J. Biomech. 41:3002–3009, 2008.CrossRefPubMedGoogle Scholar
  9. 9.
    d’Udekem, Y., C. Ovaert, F. Grandjean, V. Gerin, M. Cailteux, P. Shango-Lody, A. Vliers, T. Sluysmans, A. Robert, and J. Rubay. Tetralogy of Fallot: transannular and right ventricular patching equally affect late functional status. Circulation 102:III116–III122, 2000.PubMedGoogle Scholar
  10. 10.
    Dasi, L. P., R. Krishnankuttyrema, H. D. Kitajima, K. Pekkan, K. S. Sundareswaran, M. Fogel, S. Sharma, K. Whitehead, K. Kanter, and A. P. Yoganathan. Fontan hemodynamics: importance of pulmonary artery diameter. J. Thorac. Cardiovasc. Surg. 137:560–564, 2009.CrossRefPubMedGoogle Scholar
  11. 11.
    Dasi, L. P., K. Pekkan, D. de Zelicourt, K. S. Sundareswaran, R. Krishnankutty, P. J. Delnido, and A. P. Yoganathan. Hemodynamic energy dissipation in the cardiovascular system: generalized theoretical analysis on disease states. Ann. Biomed. Eng. 37:661–673, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation. J. Biomech. 41:2246–2252, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Figueroa, C. A., I. E. Vignon-Clementel, K. C. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blow flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706, 2006.CrossRefGoogle Scholar
  14. 14.
    Fogel, M. A., M. T. Donofrio, C. Ramaciotti, A. M. Hubbard, and P. M. Weinberg. Magnetic resonance and echocardiographic imaging of pulmonary artery size throughout stages of Fontan reconstruction. Circulation 90:2927–2936, 1994.PubMedGoogle Scholar
  15. 15.
    Fogel, M. A., and J. Rychik. Right ventricular function in congenital heart disease: pressure and volume overload lesions. Prog. Cardiovasc. Dis. 40:343–356, 1998.CrossRefPubMedGoogle Scholar
  16. 16.
    Funamoto, K., Y. Suzuki, T. Hayase, T. Kosugi, and H. Isoda. Numerical validation of MR-measurement-integrated simulation of blood flow in a cerebral aneurysm. Ann. Biomed. Eng. 37:1105–1116, 2009.CrossRefPubMedGoogle Scholar
  17. 17.
    Grigioni, M., G. D’Avenio, A. Amodeo, and R. M. Di Donato. Power dissipation associated with surgical operations’ hemodynamics: critical issues and application to the total cavopulmonary connection. J. Biomech. 39:1583–1594, 2006.CrossRefPubMedGoogle Scholar
  18. 18.
    Harrild, D. M., C. I. Berul, F. Cecchin, T. Geva, K. Gauvreau, F. Pigula, and E. P. Walsh. Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation 119:445–451, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Hazekamp, M. G., M. M. Kurvers, P. H. Schoof, H. W. Vliegen, B. M. Mulder, A. A. Roest, J. Ottenkamp, and R. A. Dion. Pulmonary valve insertion late after repair of Fallot’s tetralogy. Eur. J. Cardiothorac. Surg. 19:667–670, 2001.CrossRefPubMedGoogle Scholar
  20. 20.
    Johansson, B., S. V. Babu-Narayan, and P. J. Kilner. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J. Cardiovasc. Magn. Reson. 11:1, 2009.CrossRefPubMedGoogle Scholar
  21. 21.
    Knauth, A. L., K. Gauvreau, A. J. Powell, M. J. Landzberg, E. P. Walsh, J. E. Lock, P. J. del Nido, and T. Geva. Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart 94:211–216, 2008.CrossRefPubMedGoogle Scholar
  22. 22.
    Laffon, E., V. Bernard, M. Montaudon, R. Marthan, J. L. Barat, and F. Laurent. Tuning of pulmonary arterial circulation evidenced by MR phase mapping in healthy volunteers. J. Appl. Physiol. 90:469–474, 2001.PubMedGoogle Scholar
  23. 23.
    Liu, Y., K. Pekkan, S. C. Jones, and A. P. Yoganathan. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection. J. Biomech. Eng. 126:594–603, 2004.CrossRefPubMedGoogle Scholar
  24. 24.
    Marsden, A. L., V. M. Reddy, S. C. Shadden, F. P. Chan, C. A. Taylor, and J. A. Feinstein. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenit. Heart Dis. 5:104–117, 2010.CrossRefPubMedGoogle Scholar
  25. 25.
    Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37:516–531, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Oechslin, E. N., D. A. Harrison, L. Harris, E. Downar, G. D. Webb, S. S. Siu, and W. G. Williams. Reoperation in adults with repair of tetralogy of fallot: indications and outcomes. J. Thorac. Cardiovasc. Surg. 118:245–251, 1999.CrossRefPubMedGoogle Scholar
  27. 27.
    Owen, A. R., and M. A. Gatzoulis. Tetralogy of fallot: late outcome after repair and surgical implications. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 3:216–226, 2000.PubMedGoogle Scholar
  28. 28.
    Pohost, G. M., L. Hung, and M. Doyle. Clinical use of cardiovascular magnetic resonance. Circulation 108:647–653, 2003.CrossRefPubMedGoogle Scholar
  29. 29.
    Redington, A. N., H. H. Gray, M. E. Hodson, M. L. Rigby, and P. J. Oldershaw. Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Br. Heart J. 59:23–30, 1988.CrossRefPubMedGoogle Scholar
  30. 30.
    Redington, A. N., M. L. Rigby, E. A. Shinebourne, and P. J. Oldershaw. Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br. Heart J. 63:45–49, 1990.CrossRefPubMedGoogle Scholar
  31. 31.
    Rosenthal, A. Adults with tetralogy of fallot—repaired, yes; cured, no. N. Engl. J. Med. 329:655–656, 1993.CrossRefPubMedGoogle Scholar
  32. 32.
    Schipke, J. D., J. Alexander, Jr., Y. Harasawa, R. Schulz, and D. Burkhoff. Interrelation between end-systolic pressure-volume and pressure-wall thickness relations. Am. J. Physiol. 255:H679–H684, 1988.PubMedGoogle Scholar
  33. 33.
    Sievers, B., B. Brandts, J. C. Moon, D. J. Pennell, and H. J. Trappe. Cardiovascular magnetic resonance of asymptomatic myocardial infarction. Int. J. Cardiol. 93:79–80, 2004.CrossRefPubMedGoogle Scholar
  34. 34.
    Soerensen, D. D., K. Pekkan, K. S. Sundareswaran, and A. P. Yoganathan. New power loss optimized Fontan connection evaluated by calculation of power loss using high resolution PC-MRI and CFD. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2:1144–1147, 2004.PubMedGoogle Scholar
  35. 35.
    Spilker, R. L., J. A. Feinstein, D. W. Parker, V. M. Reddy, and C. A. Taylor. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35:546–559, 2007.CrossRefPubMedGoogle Scholar
  36. 36.
    Sundareswaran, K. S., K. R. Kanter, H. D. Kitajima, R. Krishnankutty, J. F. Sabatier, W. J. Parks, S. Sharma, A. P. Yoganathan, and M. Fogel. Impaired power output and cardiac index with hypoplastic left heart syndrome: a magnetic resonance imaging study. Ann. Thorac. Surg. 82:1267–1275, 2006; (discussion 1275–1267).CrossRefPubMedGoogle Scholar
  37. 37.
    Therrien, J., S. C. Siu, P. R. McLaughlin, P. P. Liu, W. G. Williams, and G. D. Webb. Pulmonary valve replacement in adults late after repair of tetralogy of fallot: are we operating too late? J. Am. Coll. Cardiol. 36:1670–1675, 2000.CrossRefPubMedGoogle Scholar
  38. 38.
    Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:I165–I171, 2007.CrossRefPubMedGoogle Scholar
  39. 39.
    Wong, K. K., R. M. Kelso, S. G. Worthley, P. Sanders, J. Mazumdar, and D. Abbott. Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann. Biomed. Eng. 37:1495–1515, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Ashish Das
    • 1
  • Rupak K. Banerjee
    • 1
    • 2
  • William M. Gottliebson
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.The Heart InstituteCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations