Annals of Biomedical Engineering

, Volume 38, Issue 12, pp 3766–3776 | Cite as

Development and Validation of a Finite Element Model of the Superior Glenoid Labrum

  • Christopher J. Gatti
  • Joseph D. Maratt
  • Mark L. Palmer
  • Richard E. HughesEmail author
  • James E. Carpenter


Pathology of the superior glenoid labrum is a common source of musculoskeletal pain and disability. One of the proposed mechanisms of injury to the labrum is superior humeral head migration, which can be seen with rotator cuff insufficiency. Due to the size, anatomical location, and complex composition of the labrum, laboratory experiments have many methodological difficulties. The purpose of this study was to develop and validate a finite element model of the glenoid labrum. The model developed includes the glenoid labrum, glenoid cartilage, glenoid bone, and the humeral head cartilage. Labral displacements derived from the finite element model were compared to those measured during a controlled validation experiment simulating superior humeral head translations of 1, 2, and 3 mm. The results of the finite element model compared well to experimental measurements, falling within one standard deviation of the experimental data in most cases. The model predicted maximum average strains in the superior labrum of 7.9, 10.1, and 11.9%, for 1, 2, and 3 mm of humeral translation, respectively. The correspondence between the finite element model and the validation experiment supports the use of this model to better understand the pathomechanics of the superior labrum.


Glenoid labrum Finite element Humeral translation Displacement 



This work was funded by an internal grant from the Department of Orthopaedic Surgery and the Valassis Endowed Research Fund. The authors would like to thank and acknowledge the contributions of Dr. Steve Goldstein, Edward Sihler, Bryan Ladd, Jeff Meganck, Jia Li, Charles Roehm, Dennis Kayner, Dave Marvicsin, Ramon A. Ruberte Thiele, Adam Runkle, Wajeehullah Muhammad, Dr. Robert Kohen, Erin Robinson Bigelow, and Dr. Michael Bey.


  1. 1.
    Abboud, J. A., and L. J. Soslowsky. Interplay of the static and dynamic restraints in glenohumeral instability. Clin. Orthop. Relat. Res. 400:48–57, 2002.CrossRefPubMedGoogle Scholar
  2. 2.
    Adams, C. R., M. A. Baldwin, P. J. Laz, P. J. Rullkoetter, and J. E. Langenderfer. Effects of rotator cuff tears on muscle moment arms: a computational study. J. Biomech. 40(15):3373–3380, 2007.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson, A. E., C. L. Peters, B. D. Tuttle, and J. A. Weiss. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. Trans. ASME 127(3):364–373, 2005.CrossRefGoogle Scholar
  4. 4.
    Andrews, J. R., W. G. Carson, and W. D. Mcleod. Glenoid labrum tears related to the long head of the biceps. Am. J. Sports Med. 13(5):337–341, 1985.CrossRefPubMedGoogle Scholar
  5. 5.
    Bendjaballah, M. Z., A. Shirazi-Adl, and D. J. Zukor. Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2(2):69–79, 1995.CrossRefGoogle Scholar
  6. 6.
    Bey, M. J., S. K. Kline, R. Zauel, T. R. Lock, and P. A. Kolowich. Measuring dynamic in vivo glenohumeral joint kinematics: technique and preliminary results. J. Biomech. 41(3):711–714, 2008.CrossRefPubMedGoogle Scholar
  7. 7.
    Bishop, J. L., S. K. Kline, K. J. Aalderink, R. Zauel, and M. J. Bey. Glenoid inclination: in vivo measures in rotator cuff tear patients and associations with superior glenohumeral joint translation. J. Shoulder Elbow Surg. 18(2):231–236, 2009.CrossRefPubMedGoogle Scholar
  8. 8.
    Blankevoort, L., J. H. Kuiper, R. Huiskes, and H. J. Grootenboer. Articular cartilage in a three-dimensional model of the knee. J. Biomech. 24(11):1019–1031, 1991.CrossRefPubMedGoogle Scholar
  9. 9.
    Carey, J., C. F. Small, and D. R. Pichora. In situ compressive properties of the glenoid labrum. J. Biomed. Mater. Res. 51:711–716, 2000.CrossRefPubMedGoogle Scholar
  10. 10.
    Clavert, P., M. Zerah, J. Krier, P. Mille, J. F. Kempf, and J. L. Kahn. Finite element analysis of the strain distribution in the humeral head tubercles during abduction: comparison of young and osteoporotic bone. Surg. Radiol. Anat. 28(6):581–587, 2006.CrossRefPubMedGoogle Scholar
  11. 11.
    Cohen, B., T. R. Gardner, and G. A. Ateshian. The influence of transverse isotropy on cartilage indentation behavior: a study of the human humeral head. Trans. Orthop. Res. Soc. 18:185, 1993.Google Scholar
  12. 12.
    Cooper, D. E., S. P. Arnoczky, S. J. O’Brien, R. F. Warren, E. DiCarlo, and A. A. Allen. Anatomy, histology, and vascularity of the glenoid labrum. An anatomical study. J. Bone Joint Surg. Am. 74(1):46–52, 1992.PubMedGoogle Scholar
  13. 13.
    D’Alessandro, D. F., J. E. Fleischli, and P. M. Connor. Superior labral lesions: diagnosis and management. J. Athl. Train. 35(3):286–292, 2000.PubMedGoogle Scholar
  14. 14.
    Davidson, P. A., and D. W. Rivenburgh. Mobile superior glenoid labrum. Am. J. Sports Med. 32(4):962–966, 2004.CrossRefPubMedGoogle Scholar
  15. 15.
    DePalma, A. F., G. Callery, and G. A. Bennet. Variational anatomy and degenerative lesions of the shoulder joint. In: American Academy of Orthopedic Surgeons: Instructional Course Lectures, edited by W. Blount. Mosby, 1949, pp. 255–281.Google Scholar
  16. 16.
    Drury, N. J. Evaluating the anterior stability provided by the glenohumeral capsule: a finite element approach. Master of Science Thesis, University of Pittsburgh, 2006.Google Scholar
  17. 17.
    Drury, N. J., B. J. Ellis, J. A. Weiss, P. J. McMahon, and R. E. Debski. The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule pathology. In: 54th Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, 2008.Google Scholar
  18. 18.
    Ellis, B. J., R. E. Debski, S. M. Moore, P. J. McMahon, and J. A. Weiss. Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. J. Biomech. 40(3):603–612, 2007.CrossRefPubMedGoogle Scholar
  19. 19.
    Habermeyer, P., U. Schuller, and E. Wiedemann. The intra-articular pressure of the shoulder: an experimental study on the role of the glenoid labrum in stabilizing the joint. Arthroscopy 8:166–172, 1992.CrossRefPubMedGoogle Scholar
  20. 20.
    Hill, A. M., E. J. Hoerning, K. Brook, C. D. Smith, J. Moss, T. Ryder, A. L. Wallace, and A. M. J. Bull. Collagenous microstructure of the glenoid labrum and biceps anchor. J. Anat. 212:853–862, 2008.CrossRefPubMedGoogle Scholar
  21. 21.
    Howell, S. M., and B. J. Galinat. The glenoid-labrum socket: a constrained articular surface. Clin. Orthop. Relat. Res. 243:122–125, 1989.PubMedGoogle Scholar
  22. 22.
    Lazarus, M. D., J. A. Sidles, D. T. Harryman, and F. Matsen, III. Effect of a chondral-labral defect on glenoid concavity and glenohumeral stability. J. Bone Joint Surg. Am. 78(1):94–102, 1996.PubMedGoogle Scholar
  23. 23.
    Lippitt, S., and F. Matsen. Mechanisms of glenohumeral joint stability. Clin. Orthop. Relat. Res. 291:20–28, 1993.PubMedGoogle Scholar
  24. 24.
    Lippitt, S., J. E. Vanderhooft, S. L. Harris, J. A. Sidles, D. T. Harryman, and F. A. Matsen, III. Glenohumeral stability from concavity-compression: a quantitative analysis. J. Shoulder Elbow Surg. 2(1):27–35, 1993.CrossRefGoogle Scholar
  25. 25.
    Mura, N., S. W. O’Driscoll, M. E. Zobitz, T. R. Jenkyn, S. M. Chou, A. M. Halder, and K. N. An. The effect of infraspinatus disruption on glenohumeral torque and superior migration of the humeral head: a biomechanical study. J. Biomech. 12(2):179–184, 2003.Google Scholar
  26. 26.
    Nishida, K., H. Hashizume, K. Toda, and H. Inoue. Histologic and scanning electron microscopic study of the glenoid labrum. J. Shoulder Elbow Surg. 5(2):132–138, 1996.CrossRefPubMedGoogle Scholar
  27. 27.
    Nishinaka, N., H. Tsutsui, K. Mihara, K. Suzuki, D. Makiuchi, Y. Kon, T. W. Wright, M. W. Moser, K. Gamada, H. Sugimoto, and S. A. Banks. Determination of in vivo glenohumeral translation using fluoroscopy and shape-matching techniques. J. Shoulder Elbow Surg. 17(2):319–322, 2008.CrossRefPubMedGoogle Scholar
  28. 28.
    Peña, E., B. Calvo, M. A. Martínez, and M. Doblaré. A three-dimensional finite element analysis of the combined behavior of ligaments and meniscus in the healthy human knee joint. J. Biomech. 39(9):1686–1701, 2006.CrossRefPubMedGoogle Scholar
  29. 29.
    Peña, E., B. Calvo, M. A. Martínez, and M. Doblaré. Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Comput. Biol. Med. 37(3):376–387, 2007.CrossRefPubMedGoogle Scholar
  30. 30.
    Pradhan, R. L., E. Itoi, Y. Hatakeyama, M. Urayama, and K. Sato. Superior labral strain during the throwing motion: a cadaveric study. Am. J. Sports Med. 29(4):488–492, 2001.PubMedGoogle Scholar
  31. 31.
    Prodromos, C. C., J. A. Ferry, A. L. Schiller, and B. Zarins. Histologic studies of the glenoid labrum from fetal life to old age. J. Bone Joint Surg. Am. 72(9):1344–1348, 1990.PubMedGoogle Scholar
  32. 32.
    Ramos, A., and J. A. Simões. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med. Eng. Phys. 28(9):916–924, 2006.CrossRefPubMedGoogle Scholar
  33. 33.
    Rao, A. G., T. K. Kim, E. Chronopoulos, and E. G. McFarland. Anatomical variants in the anterosuperior aspect of the glenoid labrum: a statistical analysis of seventy-three cases. J. Bone Joint Surg. Am. 85(4):653–659, 2003.PubMedGoogle Scholar
  34. 34.
    Rizio, L., J. Garcia, R. Renard, and C. Got. Anterior instability increases superior labral strain in the late cocking phase of throwing. Orthopedics 30(7):544–550, 2007.PubMedGoogle Scholar
  35. 35.
    Runkle, A. C., C. J. Gatti, W. Muhammad, R. A. Ruberte Thiele, M. L. Palmer, R. E. Hughes, and J. E. Carpenter. Superior glenoid labrum displacement with humeral head translation. 2010 (submitted).Google Scholar
  36. 36.
    Smith, C. D., S. D. Masouros, A. M. Hill, A. L. Wallace, A. A. Amis, and A. M. J. Bull. Tensile properties of the human glenoid labrum. J. Anat. 212:49–54, 2008.PubMedGoogle Scholar
  37. 37.
    Snyder, S. J., M. P. Banas, and R. P. Karzel. An analysis of 140 injuries to the superior glenoid labrum. J. Shoulder Elbow Surg. 4:243–248, 1995.CrossRefPubMedGoogle Scholar
  38. 38.
    Su, W. R., J. E. Budoff, and Z. P. Luo. The effect of anterosuperior rotator cuff tears on glenohumeral translation. Arthroscopy 25(3):282–289, 2009.CrossRefPubMedGoogle Scholar
  39. 39.
    Tamai, K., S. Okinaga, M. Ohtsuka, and A. Inokuchi. Fibrous architecture of the glenoid labrum. In: The Shoulder (Proceedings of the Third International Conference on Surgery of the Shoulder), edited by N. Takagishi. Fukuoda: Professional Postgraduate Services, 1986, pp. 27–29.Google Scholar
  40. 40.
    Terrier, A., A. Vogel, M. Capezzali, and A. Farron. An algorithm to allow humerus translation in the indeterminate problem of shoulder abduction. Med. Eng. Phys. 22(6):645–651, 2007.Google Scholar
  41. 41.
    Tuoheti, Y., E. Itoi, H. Minagawa, N. Yamamoto, H. Saito, N. Seki, K. Okada, Y. Shimada, and H. Abe. Attachment types of the long head of the biceps tendon to the glenoid labrum and their relationship with the glenohumeral ligaments. Arthroscopy 21(10):1242–1249, 2005.CrossRefPubMedGoogle Scholar
  42. 42.
    Vadher, S. P., H. Nayeb-Hashemi, P. K. Canavan, and G. M. Warner. Finite element modeling following partial menisectomy: effect of various size of resection. In: Conference Proceedings of the 28th IEEE Engineering in Medicine and Biology Society. 1:2098–2101, 2006.Google Scholar
  43. 43.
    Vangsness, C. T., S. S. Jorgenson, T. Watson, and D. L. Johnson. The origin of the long head of the biceps from the scapula and glenoid labrum. J. Bone Joint Surg. Br. 76(6):951–954, 1994.PubMedGoogle Scholar
  44. 44.
    Weiss, J. A., J. C. Gardiner, B. J. Ellis, T. J. Lujan, and N. S. Phatak. Three-dimensional finite element modeling of ligaments: technical aspects. Med. Eng. Phys. 27(10):845–861, 2005.CrossRefPubMedGoogle Scholar
  45. 45.
    Yannas, I. V., and A. V. Tobolsky. Cross-linking of gelatin by dehydration. Nature 215:509–510, 1967.CrossRefPubMedGoogle Scholar
  46. 46.
    Yao, J., P. D. Funkenbusch, J. Snibbe, M. Maloney, and A. L. Lerner. Sensitivities of medical meniscus motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. J. Biomech. Eng. Trans. ASME 128(3):399–408, 2006.CrossRefGoogle Scholar
  47. 47.
    Yao, J., J. Snibbe, M. Maloney, and A. L. Lerner. Medial meniscus of an ACL deficient knee under anterior loading: a finite element analysis with image-based experimental validation. J. Biomech. Eng. Trans. ASME 128(1):135–141, 2006.CrossRefGoogle Scholar
  48. 48.
    Yeh, M. L., D. Lintner, and Z. P. Luo. Stress distribution in the superior labrum during throwing motion. Am. J. Sports Med. 33(3):395–401, 2005.CrossRefPubMedGoogle Scholar
  49. 49.
    Youm, T., N. S. ElAttrache, J. E. Tibone, M. H. McGarry, and T. Q. Lee. The effects of the long head of the biceps on glenohumeral kinematics. J. Shoulder Elbow Surg. 18(1):122–129, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Christopher J. Gatti
    • 1
    • 2
  • Joseph D. Maratt
    • 2
  • Mark L. Palmer
    • 3
    • 4
  • Richard E. Hughes
    • 1
    • 2
    • 4
    Email author
  • James E. Carpenter
    • 2
  1. 1.Laboratory for Optimization and Computation in Orthopaedic SurgeryUniversity of MichiganAnn ArborUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborUSA
  3. 3.School of KinesiologyUniversity of MichiganAnn ArborUSA
  4. 4.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations