Annals of Biomedical Engineering

, Volume 38, Issue 12, pp 3581–3591

An Automated Segmentation Approach for Highlighting the Histological Complexity of Human Lung Cancer

  • J. C. Sieren
  • J. Weydert
  • A. Bell
  • B. De Young
  • A. R. Smith
  • J. Thiesse
  • E. Namati
  • Geoffrey McLennan


Lung cancer nodules, particularly adenocarcinoma, contain a complex intermixing of cellular tissue types: incorporating cancer cells, fibroblastic stromal tissue, and inactive fibrosis. Quantitative proportions and distributions of the various tissue types may be insightful for understanding lung cancer growth, classification, and prognostic factors. However, current methods of histological assessment are qualitative and provide limited opportunity to systematically evaluate the relevance of lung nodule cellular heterogeneity. In this study we present both a manual and an automatic method for segmentation of tissue types in histological sections of resected human lung cancer nodules. A specialized staining approach incorporating immunohistochemistry with a modified Masson’s Trichrome counterstain was employed to maximize color contrast in the tissue samples for automated segmentation. The developed, clustering-based, fully automated segmentation approach segments complete lung nodule cross-sectional histology slides in less than 1 min, compared to manual segmentation which requires multiple hours to complete. We found the accuracy of the automated approach to be comparable to that of the manual segmentation with the added advantages of improved time efficiency, removal of susceptibility to human error, and 100% repeatability.


Adenocarcinoma Lung nodule Histology Immunohistochemistry Computer analysis Pathology Quantification 


  1. 1.
    Brambilla, E., W. D. Travis, T. V. Colby, B. Corrin, and Y. Shimosato. The new World Health Organization classification of lung tumours. Eur. Respir. J. 18:1059–1068, 2001.CrossRefPubMedGoogle Scholar
  2. 2.
    Di Cataldo, S., E. Ficarra, A. Acquaviva, and E. Macii. Achieving the way for automated segmentation of nuclei in cancer tissue images through morphology-based approach: a quantitative evaluation. Comput. Med. Imaging Graph., in press, 2010.Google Scholar
  3. 3.
    Dufour, J. F., R. DeLellis, and M. M. Kaplan. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann. Intern. Med. 127:981–985, 1997.PubMedGoogle Scholar
  4. 4.
    Guillemin, F., M. Devaux, and F. Guillon. Evaluation of plant histology by automatic clustering based on individual cell morphological features. Image Anal. Stereol. 23:13–22, 2004.Google Scholar
  5. 5.
    Hartigan, A., and M. A. Wong. A k-means clustering algorithm. Appl. Stat. 28:100–108, 1979.CrossRefGoogle Scholar
  6. 6.
    Inoue, M., T. Takakuwa, M. Minami, H. Shiono, T. Utsumi, Y. Kadota, T. Nasu, K. Aozasa, and M. Okumura. Clinicopathologic factors influencing postoperative prognosis in patients with small-sized adenocarcinoma of the lung. J. Thorac. Cardiovasc. Surg. 135:830–836, 2008.CrossRefPubMedGoogle Scholar
  7. 7.
    Karacali, B., A. P. Vamvakidou, and A. Tozeren. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers. BMC Med. Imaging 7:7, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Latson, L., B. Sebek, and K. A. Powell. Automated cell nuclear segmentation in color images of hematoxylin and eosin-stained breast biopsy. Anal. Quant. Cytol. Histol. 25:321–331, 2003.PubMedGoogle Scholar
  9. 9.
    Lazarous, D. F., M. Shou, and E. F. Unger. Combined bromodeoxyuridine immunohistochemistry and Masson trichrome staining: facilitated detection of cell proliferation in viable vs. Infarcted myocardium. Biotech. Histochem. 67:253–255, 1992.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee, W. M. Acute liver failure. N. Engl. J. Med. 329:1862–1872, 1993.CrossRefPubMedGoogle Scholar
  11. 11.
    Ma, L. J., and A. B. Fogo. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 64:350–355, 2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Maeshima, A. M., T. Niki, A. Maeshima, T. Yamada, H. Kondo, and Y. Matsuno. Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer 95:2546–2554, 2002.CrossRefPubMedGoogle Scholar
  13. 13.
    Meyrier, A. Mechanisms of disease: focal segmental glomerulosclerosis. Nat. Clin. Pract. Nephrol. 1:44–54, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Moll, R., W. W. Franke, D. L. Schiller, B. Geiger, and R. Krepler. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24, 1982.CrossRefPubMedGoogle Scholar
  15. 15.
    Namati, E., J. De Ryk, J. Thiesse, Z. Towfic, E. Hoffman, and G. McLennan. Large image microscope array for the compilation of multimodality whole organ image databases. Anat. Rec. (Hoboken) 290:1377–1387, 2007.Google Scholar
  16. 16.
    Okudera, K., Y. Kamata, S. Takanashi, Y. Hasegawa, T. Tsushima, Y. Ogura, K. Nakanishi, H. Sato, and K. Okumura. Small adenocarcinoma of the lung: prognostic significance of central fibrosis chiefly because of its association with angiogenesis and lymphangiogenesis. Pathol. Int. 56:494–502, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Ouyang, J., M. Guzman, F. Desoto-Lapaix, M. R. Pincus, and R. Wieczorek. Utility of desmin and a Masson’s trichrome method to detect early acute myocardial infarction in autopsy tissues. Int. J. Clin. Exp. Pathol. 3:98–105, 2009.PubMedGoogle Scholar
  18. 18.
    Petushi, S., F. U. Garcia, M. M. Haber, C. Katsinis, and A. Tozeren. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging 6:14, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    Rudolph, K. L., S. Chang, M. Millard, N. Schreiber-Agus, and R. A. DePinho. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287:1253–1258, 2000.CrossRefPubMedGoogle Scholar
  20. 20.
    Sakao, Y., H. Miyamoto, M. Sakuraba, T. Oh, K. Shiomi, S. Sonobe, and H. Izumi. Prognostic significance of a histologic subtype in small adenocarcinoma of the lung: the impact of nonbronchioloalveolar carcinoma components. Ann. Thorac. Surg. 83:209–214, 2007.CrossRefPubMedGoogle Scholar
  21. 21.
    Sieren, J. C., J. Weydert, E. Namati, J. Thiesse, J. P. Sieren, J. M. Reinhardt, E. Hoffman, and G. McLennan. A process model for direct correlation between computed tomography and histopathology—application in lung cancer. Acad. Radiol. 17:169–180, 2009.CrossRefGoogle Scholar
  22. 22.
    Sugimoto, H., G. Grahovac, M. Zeisberg, and R. Kalluri. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 56:1825–1833, 2007.CrossRefPubMedGoogle Scholar
  23. 23.
    Suzuki, K., T. Yokose, J. Yoshida, M. Nishimura, K. Takahashi, K. Nagai, and Y. Nishiwaki. Prognostic significance of the size of central fibrosis in peripheral adenocarcinoma of the lung. Ann. Thorac. Surg. 69:893–897, 2000.CrossRefPubMedGoogle Scholar
  24. 24.
    Terasaki, H., T. Niki, Y. Matsuno, T. Yamada, A. Maeshima, H. Asamura, N. Hayabuchi, and S. Hirohashi. Lung adenocarcinoma with mixed bronchioloalveolar and invasive components: clinicopathological features, subclassification by extent of invasive foci, and immunohistochemical characterization. Am. J. Surg. Pathol. 27:937–951, 2003.CrossRefPubMedGoogle Scholar
  25. 25.
    Travis, W. D., K. Garg, W. A. Franklin, I. I. Wistuba, B. Sabloff, M. Noguchi, R. Kakinuma, M. Zakowski, M. Ginsberg, R. Padera, F. Jacobson, B. E. Johnson, F. Hirsch, E. Brambilla, D. B. Flieder, K. R. Geisinger, F. Thunnisen, K. Kerr, D. Yankelevitz, T. J. Franks, J. R. Galvin, D. W. Henderson, A. G. Nicholson, P. S. Hasleton, V. Roggli, M. S. Tsao, F. Cappuzzo, and M. Vazquez. Evolving concepts in the pathology and computed tomography imaging of lung adenocarcinoma and bronchioloalveolar carcinoma. J. Clin. Oncol. 23:3279–3287, 2005.Google Scholar
  26. 26.
    Wick, M. R. Diagnostic Histochemistry. Cambridge: Cambridge University Press, p. 20, 2008.Google Scholar
  27. 27.
    Wolberg, W. H., W. N. Street, and O. L. Mangasarian. Computer-derived nuclear features compared with axillary lymph node status for breast carcinoma prognosis. Cancer 81:172–179, 1997.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • J. C. Sieren
    • 1
    • 3
    • 5
  • J. Weydert
    • 2
  • A. Bell
    • 2
  • B. De Young
    • 2
  • A. R. Smith
    • 1
    • 5
  • J. Thiesse
    • 1
  • E. Namati
    • 1
  • Geoffrey McLennan
    • 1
    • 3
    • 4
    • 5
  1. 1.Department of Internal MedicineUniversity of IowaIowa CityUSA
  2. 2.Department of Surgical PathologyUniversity of IowaIowa CityUSA
  3. 3.Department of Biomedical EngineeringUniversity of IowaIowa CityUSA
  4. 4.Department of RadiologyUniversity of IowaIowa CityUSA
  5. 5.The Iowa Institute for Biomedical ImagingUniversity of IowaIowa CityUSA

Personalised recommendations