Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 11, pp 3466–3477 | Cite as

Modeling the Complex Dynamics of Derecruitment in the Lung

  • Baoshun Ma
  • Jason H. T. BatesEmail author
Article

Abstract

Recruitment maneuvers using deep inflations (DI) have long been used clinically with the objective of recruiting collapsed regions of the lung. Considerable uncertainty continues to exist, however, as to how best to employ recruitment maneuvers or even if they should be used routinely at all for patients receiving mechanical ventilation. Much of this uncertainty may arise from a lack of understanding about the dynamic nature of recruitment and derecruitment. To shed some light on this complex issue, we developed a time-dependent computational model of recruitment and derecruitment in the lung based on a symmetrically bifurcating airway tree in which each branch has a critical closing and opening pressure as well as pressure-dependent opening and closing speeds. Starting from the fully open state, the model underwent regular ventilation for 8 min followed by a series of identical DIs separated by 5 min of identical regular ventilation. We found that the geographical nature and extent of derecruitment before and 5 min after each DI were not always the same, demonstrating that the model exhibits multiple stable states. We conclude that the effectiveness of a recruitment maneuver is not only simply a function of the duration and magnitude of a DI, but may also have an unpredictable component arising from the distributed bi-stable nature of the derecruitment process itself.

Keywords

Lung recruitment Mechanical ventilation Acute lung injury 

Notes

Acknowledgments

This study was supported by NIH grants NCRR COBRE RR15557 and R01 HL75593. The simulations in this work were performed on the Linux cluster at the Vermont Advanced Computing Center (VACC).

References

  1. 1.
    Albert, S. P., J. DiRocco, G. B. Allen, J. H. T. Bates, R. Lafollette, et al. The role of time and pressure on alveolar recruitment. J. Appl. Physiol. 106:757–765, 2009.CrossRefPubMedGoogle Scholar
  2. 2.
    Alencar, A. M., S. V. Buldyrev, A. Majumdar, H. E. Stanley, and B. Suki. Avalanche dynamics of crackle sound in the lung. Phys. Rev. Lett. 87:088101, 2001.CrossRefPubMedGoogle Scholar
  3. 3.
    Allen, G., and J. H. T. Bates. Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury. J. Appl. Physiol. 96:293–300, 2004.CrossRefPubMedGoogle Scholar
  4. 4.
    Allen, G., L. K. A. Lundblad, P. Parsons, and J. H. T. Bates. Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93:1709–1715, 2002.PubMedGoogle Scholar
  5. 5.
    Allen, G. B., T. Leclair, M. Cloutier, J. Thompson-Figueroa, and J. H. T. Bates. The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration. Am. J. Physiol. Lung Cell. Mol. Physiol. 292:L1580–L1589, 2007.CrossRefPubMedGoogle Scholar
  6. 6.
    Allen, G. B., B. T. Suratt, L. Rinaldi, J. M. Petty, and J. H. T. Bates. Choosing the frequency of deep inflation in mice: balancing recruitment against ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 291:L710–L717, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Anafi, R. C., K. C. Beck, and T. A. Wilson. Impedance, gas mixing, and bimodal ventilation in constricted lungs. J. Appl. Physiol. 94:1003–1011, 2003.PubMedGoogle Scholar
  8. 8.
    Anafi, R. C., and T. A. Wilson. Airway stability and heterogeneity in the constricted lung. J. Appl. Physiol. 91:1185–1192, 2001.PubMedGoogle Scholar
  9. 9.
    Bates, J. H. T. Lung Mechanics: An Inverse Modeling Approach. Cambridge: Cambridge University Press, 236 pp, 2009Google Scholar
  10. 10.
    Bates, J. H. T., and C. G. Irvin. Time dependence of recruitment and derecruitment in the lung: a theoretical model. J. Appl. Physiol. 93:705–713, 2002.PubMedGoogle Scholar
  11. 11.
    Borges, J. B., V. N. Okamoto, G. F. Matos, M. P. Caramez, P. R. Arantes, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 174:268–278, 2006.CrossRefPubMedGoogle Scholar
  12. 12.
    Cannizzaro, V., L. J. Berry, P. K. Nicholls, G. R. Zosky, D. J. Turner, et al. Lung volume recruitment maneuvers and respiratory system mechanics in mechanically ventilated mice. Respir. Physiol. Neurobiol. 169:243–251, 2009.CrossRefPubMedGoogle Scholar
  13. 13.
    Crotti, S., D. Mascheroni, P. Caironi, P. Pelosi, G. Ronzoni, et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am. J. Respir. Crit. Care Med. 164:131–140, 2001.PubMedGoogle Scholar
  14. 14.
    Egbert, L. D., M. B. Laver, and H. H. Bendixen. Intermittent deep breaths and compliance during anesthesia in man. Anesthesiology 24:57–60, 1963.CrossRefGoogle Scholar
  15. 15.
    Fan, E., M. E. Wilcox, R. G. Brower, T. E. Stewart, S. Mehta, et al. Recruitment maneuvers for acute lung injury: a systematic review. Am. J. Respir. Crit. Care Med. 178:1156–1163, 2008.CrossRefPubMedGoogle Scholar
  16. 16.
    Farias, L. L., D. S. Faffe, D. G. Xisto, M. C. Santana, R. Lassance, et al. Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J. Appl. Physiol. 98:53–61, 2005.CrossRefPubMedGoogle Scholar
  17. 17.
    Frazer, D. G., W. G. Lindsley, K. Rosenberry, W. McKinney, W. T. Goldsmith, et al. Model predictions of the recruitment of lung units and the lung surface area–volume relationship during inflation. Ann. Biomed. Eng. 32:756–763, 2004.CrossRefPubMedGoogle Scholar
  18. 18.
    Gaver, III, D. P., R. W. Samsel, and J. Solway. Effects of surface tension and viscosity on airway reopening. J. Appl. Physiol. 69:74–85, 1990.PubMedGoogle Scholar
  19. 19.
    Gomes, R. F., and J. H. Bates. Geometric determinants of airway resistance in two isomorphic rodent species. Respir. Physiol. Neurobiol. 130:317–325, 2002.CrossRefPubMedGoogle Scholar
  20. 20.
    Halter, J. M., J. M. Steinberg, H. J. Schiller, M. DaSilva, L. A. Gatto, et al. Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am. J. Respir. Crit. Care Med. 167:1620–1626, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    Hedenstierna, G. Alveolar collapse and closure of airways: regular effects of anaesthesia. Clin. Physiol. Funct. Imaging 23:123–129, 2003.CrossRefPubMedGoogle Scholar
  22. 22.
    Kloot, T. E., L. Blanch, A. Melynne Youngblood, C. Weinert, A. B. Adams, et al. Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am. J. Respir. Crit. Care Med. 161:1485–1494, 2000.PubMedGoogle Scholar
  23. 23.
    Lichtwarck-Aschoff, M., J. Guttmann, L. Eberhard, B. Fabry, J. Birle, and M. Adolph. Delayed derecruitment after removal of PEEP in patients with acute lung injury. Acta Anaesthesiol. Scand. 41:675–684, 1997.CrossRefPubMedGoogle Scholar
  24. 24.
    Massa, C. B., G. B. Allen, and J. H. T. Bates. Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. J. Appl. Physiol. 105:1813–1821, 2008.CrossRefPubMedGoogle Scholar
  25. 25.
    Mols, G., G. Hermle, G. Fries, A. Benzing, M. Lichtwarck-Aschoff, et al. Different strategies to keep the lung open: a study in isolated perfused rabbit lungs. Crit. Care Med. 30:1598–1604, 2002.CrossRefPubMedGoogle Scholar
  26. 26.
    Mols, G., H. J. Priebe, and J. Guttmann. Alveolar recruitment in acute lung injury. Br. J. Anaesth. 96:156–166, 2006.CrossRefPubMedGoogle Scholar
  27. 27.
    Neumann, P., H. U. Rothen, J. E. Berglund, J. Valtysson, A. Magnusson, and G. Hedenstierna. Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol. Scand. 43:295–301, 1999.CrossRefPubMedGoogle Scholar
  28. 28.
    Oczenski, W., C. Hormann, C. Keller, N. Lorenzl, A. Kepka, et al. Recruitment maneuvers after a positive end-expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome. Anesthesiology 101:620–625, 2004.CrossRefPubMedGoogle Scholar
  29. 29.
    Otis, Jr., D. R., M. Johnson, T. J. Pedley, and R. D. Kamm. Role of pulmonary surfactant in airway closure: a computational study. J. Appl. Physiol. 75:1323–1333, 1993.PubMedGoogle Scholar
  30. 30.
    Pelosi, P., P. Cadringher, N. Bottino, M. Panigada, F. Carrieri, et al. Sigh in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 159:872–880, 1999.PubMedGoogle Scholar
  31. 31.
    Pelosi, P., M. Goldner, A. McKibben, A. Adams, G. Eccher, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am. J. Respir. Crit. Care Med. 164:122–130, 2001.PubMedGoogle Scholar
  32. 32.
    Perun, M. L., and D. P. Gaver, III. An experimental model investigation of the opening of a collapsed untethered pulmonary airway. J. Biomech. Eng. 117:245–253, 1995.CrossRefPubMedGoogle Scholar
  33. 33.
    Perun, M. L., and D. P. Gaver, III. Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening. J. Appl. Physiol. 79:1717–1728, 1995.PubMedGoogle Scholar
  34. 34.
    Riva, D. R., M. B. Oliveira, A. F. Rzezinski, G. Rangel, V. L. Capelozzi, et al. Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit. Care Med. 36:1900–1908, 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    Rothen, H. U., B. Sporre, G. Engberg, G. Wegenius, and G. Hedenstierna. Reexpansion of atelectasis during general anaesthesia may have a prolonged effect. Acta Anaesthesiol. Scand. 39:118–125, 1995.PubMedGoogle Scholar
  36. 36.
    Suki, B., A. M. Alencar, J. Tolnai, T. Asztalos, F. Petak, et al. Size distribution of recruited alveolar volumes in airway reopening. J. Appl. Physiol. 89:2030–2040, 2000.PubMedGoogle Scholar
  37. 37.
    Suki, B., J. S. Andrade, Jr., M. F. Coughlin, D. Stamenovic, H. E. Stanley, et al. Mathematical modeling of the first inflation of degassed lungs. Ann. Biomed. Eng. 26:608–617, 1998.CrossRefPubMedGoogle Scholar
  38. 38.
    Suki, B., A. L. Barabasi, Z. Hantos, F. Petak, and H. E. Stanley. Avalanches and power-law behaviour in lung inflation. Nature 368:615–618, 1994.CrossRefPubMedGoogle Scholar
  39. 39.
    Venegas, J. G., T. Winkler, G. Musch, M. F. Vidal Melo, D. Layfield, et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434:777–782, 2005.CrossRefPubMedGoogle Scholar
  40. 40.
    Villagra, A., A. Ochagavia, S. Vatua, G. Murias, M. Del Mar Fernandez, et al. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 165:165–170, 2002.PubMedGoogle Scholar
  41. 41.
    Winkler, T., and J. G. Venegas. Complex airway behavior and paradoxical responses to bronchoprovocation. J. Appl. Physiol. 103:655–663, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Vermont Lung Center, Department of MedicineUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations