Annals of Biomedical Engineering

, Volume 38, Issue 11, pp 3323–3337 | Cite as

Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction with Fluid Structure Interaction Modeling

  • Michalis Xenos
  • Suraj H. Rambhia
  • Yared Alemu
  • Shmuel Einav
  • Nicos Labropoulos
  • Apostolos Tassiopoulos
  • John J. Ricotta
  • Danny BluesteinEmail author


Elective repair of abdominal aortic aneurysm (AAA) is warranted when the risk of rupture exceeds that of surgery, and is mostly based on the AAA size as a crude rupture predictor. A methodology based on biomechanical considerations for a reliable patient-specific prediction of AAA risk of rupture is presented. Fluid–structure interaction (FSI) simulations conducted in models reconstructed from CT scans of patients who had contained ruptured AAA (rAAA) predicted the rupture location based on mapping of the stresses developing within the aneurysmal wall, additionally showing that a smaller rAAA presented a higher rupture risk. By providing refined means to estimate the risk of rupture, the methodology may have a major impact on diagnostics and treatment of AAA patients.


Ruptured abdominal aortic aneurysm Aneurysmal strength Rupture potential index Fluid–structure interaction Reconstruction of patient based geometry 


  1. 1.
    Bengtsson, H., and D. Bergqvist. Ruptured abdominal aortic aneurysm: a population-based study. J. Vasc. Surg. 18:74–80, 1993.CrossRefPubMedGoogle Scholar
  2. 2.
    Bettermann, K., J. F. Toole. Diagnostic evaluation and medical management of patients with ischemic cerebrovascular disease. In: Vascular Surgery, edited by R. Rutherford. Philadelphia: Elsevier, 2005, pp. 1904–1905.Google Scholar
  3. 3.
    Bluestein, D., K. Dumont, M. De Beule, J. Ricotta, P. Impellizzeri, B. Verhegghe, and P. Verdonck. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—FSI modelling. Comput. Methods Biomech. Biomed. Eng. 12:73–81, 2008.Google Scholar
  4. 4.
    Bluestein, D., Y. Alemu, I. Avrahami, M. Gharib, K. Dumont, J. J. Ricotta, and S. Einav. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech. 41:1111–1118, 2008.CrossRefPubMedGoogle Scholar
  5. 5.
    Bonert, M., R. L. Leask, J. Butany, C. R. Ethier, J. G. Myers, K. W. Johnston, and M. Ojha. The relationship between wall shear stress distributions and intimal thickening in the human abdominal aorta. Biomed. Eng. Online 2:18, 2003.CrossRefPubMedGoogle Scholar
  6. 6.
    Boyce, M. C., and E. M. Arruda. Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73:504–523, 2000.Google Scholar
  7. 7.
    Brown, L. C., and J. T. Powell. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK small aneurysm trial participants. Ann. Surg. 230:289–296, 1999.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise. J. Vasc. Surg. 37:118–123, 2003.CrossRefPubMedGoogle Scholar
  9. 9.
    Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108:189–192, 1986.CrossRefPubMedGoogle Scholar
  10. 10.
    Cronenwett, J. L., T. F. Murphy, G. B. Zelenock, W. M. Whitehouse, S. M. Lindenauer, L. M. Graham, L. E. Quint, T. M. Silver, and J. C. Stanley. Actuarial analysis of variables associated with rupture of small abdominal aortic-aneurysms. Surgery 98:472–483, 1985.PubMedGoogle Scholar
  11. 11.
    de Putter, S., B. J. Wolters, M. C. Rutten, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40:1081–1090, 2006.PubMedGoogle Scholar
  12. 12.
    Di Martino, E. S., and D. A. Vorp. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31:804–809, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Di Martino, E., S. Mantero, F. Inzoli, G. Melissano, D. Astore, R. Chiesa, and R. Fumero. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur. J. Vasc. Endovasc. Surg. 15:290–299, 1998.CrossRefPubMedGoogle Scholar
  14. 14.
    Di Martino, E. S., G. Guadagni, A. Fumero, G. Ballerini, R. Spirito, P. Biglioli, and A. Redaelli. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 23:647–655, 2001.CrossRefPubMedGoogle Scholar
  15. 15.
    Di Martino, E. S., A. Bohra, J. P. Vande Geest, N. Gupta, M. S. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.CrossRefPubMedGoogle Scholar
  16. 16.
    Fillinger, M. The long-term relationship of wall stress to the natural history of abdominal aortic aneurysms (finite element analysis and other methods). Ann. N. Y. Acad. Sci. 1085:22–28, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36:589–597, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37:724–732, 2003.CrossRefPubMedGoogle Scholar
  19. 19.
    Finol, E. A., and C. H. Amon. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow. Acta Cient. Venez. 54:43–49, 2003.PubMedGoogle Scholar
  20. 20.
    Greve, J. M., A. S. Les, B. T. Tang, M. T. Draney Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, and C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291:H1700–H1708, 2006.CrossRefPubMedGoogle Scholar
  21. 21.
    He, C. M., and M. R. Roach. The composition and mechanical properties of abdominal aortic aneurysms. J. Vasc. Surg. 20:6–13, 1994.PubMedGoogle Scholar
  22. 22.
    Holzapfel, G. A., and T. C. Gasser. A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Method Appl. Mech. 190:4379–4403, 2001.CrossRefGoogle Scholar
  23. 23.
    Holzapfel, G. A., and T. C. Gasser. Computational stress-deformation analysis of arterial walls including high-pressure response. Int. J. Cardiol. 116:78–85, 2007.CrossRefPubMedGoogle Scholar
  24. 24.
    Holzapfel, G. A., and H. W. Weizsacker. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28:377–392, 1998.CrossRefPubMedGoogle Scholar
  25. 25.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.CrossRefGoogle Scholar
  26. 26.
    Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A Solid. 21:441–463, 2002.CrossRefGoogle Scholar
  27. 27.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J. Biomech. Eng. Trans. ASME 126:264–275, 2004.CrossRefGoogle Scholar
  28. 28.
    Holzapfel, G., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech. Eng. Trans. ASME 127:166–180, 2005.CrossRefGoogle Scholar
  29. 29.
    Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.CrossRefPubMedGoogle Scholar
  30. 30.
    Hua, J., and W. R. Mower. Simple geometric characteristics fail to reliably predict abdominal aortic aneurysm wall stresses. J. Vasc. Surg. 34:308–315, 2001.CrossRefPubMedGoogle Scholar
  31. 31.
    Lederle, F. A., S. E. Wilson, G. R. Johnson, D. B. Reinke, F. N. Littooy, C. W. Acher, D. J. Ballard, L. M. Messina, I. L. Gordon, E. P. Chute, W. C. Krupski, D. Bandyk, and A. D. M. Vet. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Eng. J. Med. 346:1437–1444, 2002.CrossRefGoogle Scholar
  32. 32.
    Limet, R., N. Sakalihassan, and A. Albert. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14:540–548, 1991.CrossRefPubMedGoogle Scholar
  33. 33.
    Mooney, M. A theory of large elastic deformation. J. Appl. Phys. 11:582–592, 1940.CrossRefGoogle Scholar
  34. 34.
    Moore, Jr., J. E., S. E. Maier, D. N. Ku, and P. Boesiger. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J. Appl. Physiol. 76:1520–1527, 1994.PubMedGoogle Scholar
  35. 35.
    Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299, 2000.CrossRefPubMedGoogle Scholar
  36. 36.
    Papaharilaou, Y., J. A. Ekaterinaris, E. Manousaki, and A. N. Katsamouris. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40:367–377, 2007.CrossRefPubMedGoogle Scholar
  37. 37.
    Paszkowiak, J. J., and A. Dardik. Arterial wall shear stress: observations from the bench to the bedside. Vasc. Endovascular Surg. 37:47–57, 2003.CrossRefPubMedGoogle Scholar
  38. 38.
    Powell, J. T., A. R. Brady, L. C. Brown, J. F. Forbes, F. G. R. Fowkes, R. M. Greenhalgh, C. V. Ruckley, S. G. Thompson, and U. S. A. T. Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 352:1649–1655, 1998.CrossRefGoogle Scholar
  39. 39.
    Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.CrossRefPubMedGoogle Scholar
  40. 40.
    Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24:573–582, 1996.CrossRefPubMedGoogle Scholar
  41. 41.
    Raghavan, M. L., J. Kratzberg, E. M. C. de Tolosa, M. M. Hanaoka, P. Walker, and E. S. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.CrossRefPubMedGoogle Scholar
  42. 42.
    Reneman, R. S., T. Arts, and A. P. Hoeks. Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. Discrepancies with theory. J. Vasc. Res. 43:251–269, 2006.CrossRefPubMedGoogle Scholar
  43. 43.
    Ricotta, J. J., J. Pagan, M. Xenos, Y. Alemu, S. Einav, and D. Bluestein. Cardiovascular disease management: the need for better diagnostics. Med. Biol. Eng. Comput. 46:1059–1068, 2008.CrossRefPubMedGoogle Scholar
  44. 44.
    Rissland, P., Y. Alemu, S. Einav, J. Ricotta, and D. Bluestein. Abdominal aortic aneurysm risk of rupture—patient specific FSI simulations using anisotropic model. J. Biomech. Eng. 13:031001–031010, 2009.CrossRefGoogle Scholar
  45. 45.
    Rivlin, R. S. Large elastic deformations of isotropic materials. 1. Fundamental concepts. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 240:459–508, 1948.CrossRefGoogle Scholar
  46. 46.
    Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.PubMedGoogle Scholar
  47. 47.
    Rodriguez, J. F., C. Ruiz, M. Doblare, and G. A. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130:021023, 2008.CrossRefPubMedGoogle Scholar
  48. 48.
    Scotti, C., A. Shkolnik, S. Muluk, and E. Finol. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed. Eng. Online 4:64, 2005.CrossRefPubMedGoogle Scholar
  49. 49.
    Sussman, T., and K. J. Bathe. A finite-element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26:357–409, 1987.CrossRefGoogle Scholar
  50. 50.
    Swillens, A., L. Lanoye, J. De Backer, N. Stergiopulos, P. R. Verdonck, F. Vermassen, and P. Segers. Effect of an abdominal aortic aneurysm on wave reflection in the aorta. IEEE Trans. Biomed. Eng. 55:1602–1611, 2008.CrossRefPubMedGoogle Scholar
  51. 51.
    Thubrikar, M. Vascular Mechanics and Pathology. New York: Springer, 436 pp., 2007.Google Scholar
  52. 52.
    Truijers, M., J. A. Pol, L. J. Schultzekool, S. M. van Sterkenburg, M. F. Fillinger, and J. D. Blankensteijn. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33:401–407, 2007.CrossRefPubMedGoogle Scholar
  53. 53.
    Valencia, A., H. Morales, R. Rivera, E. Bravo, and M. Galvez. Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med. Eng. Phys. 30:329–340, 2008.CrossRefPubMedGoogle Scholar
  54. 54.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 126:815–822, 2004.CrossRefGoogle Scholar
  55. 55.
    Vande Geest, J. P., D. H. Wang, S. R. Wisniewski, M. S. Makaroun, and D. A. Vorp. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34:1098–1106, 2006.CrossRefGoogle Scholar
  56. 56.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006.CrossRefGoogle Scholar
  57. 57.
    Vande Geest, J. P., D. E. Schmidt, M. S. Sacks, and D. A. Vorp. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36:921–932, 2008.CrossRefGoogle Scholar
  58. 58.
    Vardulaki, K. A., N. M. Walker, N. E. Day, S. W. Duffy, H. A. Ashton, and R. A. Scott. Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. Br. J. Surg. 87:195–200, 2000.CrossRefPubMedGoogle Scholar
  59. 59.
    Vengrenyuk, Y., L. Cardoso, and S. Weinbaum. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol. Cell. Biomech. 5:37–47, 2008.PubMedGoogle Scholar
  60. 60.
    Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28:168–176, 2004.PubMedGoogle Scholar
  61. 61.
    Vito, R. P., and J. Hickey. The mechanical properties of soft tissues-II: the elastic response of arterial segments. J. Biomech. 13:951–957, 1980.CrossRefPubMedGoogle Scholar
  62. 62.
    Vorp, D. A., M. L. Raghavan, S. C. Muluk, M. S. Makaroun, D. L. Steed, R. Shapiro, and M. W. Webster. Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta. Ann. N. Y. Acad. Sci. 800:274–276, 1996.CrossRefPubMedGoogle Scholar
  63. 63.
    Wang, D. H., M. Makaroun, M. W. Webster, and D. A. Vorp. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123:536–539, 2001.CrossRefPubMedGoogle Scholar
  64. 64.
    Wilmink, A. B., C. S. Hubbard, N. E. Day, and C. R. Quick. The incidence of small abdominal aortic aneurysms and the change in normal infrarenal aortic diameter: implications for screening. Eur. J. Vasc. Endovasc. Surg. 21:165–170, 2001.CrossRefPubMedGoogle Scholar
  65. 65.
    Wolters, B. J., M. C. Rutten, G. W. Schurink, U. Kose, J. de Hart, and F. N. van de Vosse. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms. Med. Eng. Phys. 27:871–883, 2005.CrossRefPubMedGoogle Scholar
  66. 66.
    Yang, C., R. G. Bach, J. Zheng, I. E. Naqa, P. K. Woodard, Z. Teng, K. Billiar, and D. Tang. In vivo IVUS-based 3-D fluid-structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans. Biomed. Eng. 56:2420–2428, 2009.CrossRefPubMedGoogle Scholar
  67. 67.
    Zankl, A. R., H. Schumacher, U. Krumsdorf, H. A. Katus, L. Jahn, and C. P. Tiefenbacher. Pathology, natural history and treatment of abdominal aortic aneurysms. Clin. Res. Cardiol. 96:140–151, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Michalis Xenos
    • 1
  • Suraj H. Rambhia
    • 1
  • Yared Alemu
    • 1
  • Shmuel Einav
    • 1
  • Nicos Labropoulos
    • 3
  • Apostolos Tassiopoulos
    • 3
  • John J. Ricotta
    • 2
    • 3
  • Danny Bluestein
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA
  2. 2.Department of SurgeryWashington Hospital CenterWashingtonUSA
  3. 3.Department of SurgeryStony Brook University HospitalStony BrookUSA

Personalised recommendations