Annals of Biomedical Engineering

, Volume 38, Issue 9, pp 2896–2909 | Cite as

The Response of Bone Marrow-Derived Mesenchymal Stem Cells to Dynamic Compression Following TGF-β3 Induced Chondrogenic Differentiation

  • Stephen D. Thorpe
  • Conor T. Buckley
  • Tatiana Vinardell
  • Fergal J. O’Brien
  • Veronica A. Campbell
  • Daniel J. KellyEmail author


The objective of this study was to investigate the hypothesis that the application of dynamic compression following transforming growth factor-β3 (TGF-β3) induced differentiation will further enhance chondrogenesis of mesenchymal stem cells (MSCs). Porcine MSCs were encapsulated in agarose hydrogels and cultured in a chemically defined medium with TGF-β3 (10 ng/mL). Dynamic compression (1 Hz, 10% strain, 1 h/day) was initiated at either day 0 or day 21 and continued until day 42 of culture; with TGF-β3 withdrawn from some groups at day 21. Biochemical and mechanical properties of the MSC-seeded constructs were evaluated up to day 42. The application of dynamic compression from day 0 inhibited chondrogenesis of MSCs. This inhibition of chondrogenesis in response to dynamic compression was not observed if MSC-seeded constructs first underwent 21 days of chondrogenic differentiation in the presence of TGF-β3. Spatial differences in sGAG accumulation in response to both TGF-β3 stimulation and dynamic compression were observed within the constructs. sGAG release from the engineered construct into the surrounding culture media was also dependent on TGF-β3 stimulation, but was not effected by dynamic compression. Continued supplementation with TGF-β3 appeared to be a more potent chondrogenic stimulus than the application of 1 h of daily dynamic compression following cytokine initiated differentiation. In the context of cartilage tissue engineering, the results of this study suggest that MSC seeded constructs should be first allowed to undergo chondrogenesis in vitro prior to implantation in a load bearing environment.


Cartilage Bioreactor Mesenchymal stem cells Functional tissue engineering Mechanobiology Dynamic compression 



Funding was provided by Science Foundation Ireland (07-RFP-ENMF142 and the President of Ireland Young Researcher Award: 08/YI5/B1336).


  1. 1.
    Angele, P., D. Schumann, M. Angele, B. Kinner, C. Englert, R. Hente, B. Fuchtmeier, M. Nerlich, C. Neumann, and R. Kujat. Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41:335–346, 2004.PubMedGoogle Scholar
  2. 2.
    Angele, P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, and B. Johnstone. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res. 21:451–457, 2003.CrossRefPubMedGoogle Scholar
  3. 3.
    Babalola, O. M., and L. J. Bonassar. Effects of seeding density on proteoglycan assembly of passaged mesenchymal stem cells. Cell. Mol. Bioeng. Epub March 2, 2010. doi: 10.1007/s12195-010-0107-1.
  4. 4.
    Barbero, A., S. Grogan, D. Schafer, M. Heberer, P. Mainil-Varlet, and I. Martin. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476–484, 2004.CrossRefPubMedGoogle Scholar
  5. 5.
    Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331:889–895, 1994.CrossRefPubMedGoogle Scholar
  6. 6.
    Buckley, C. T., S. D. Thorpe, O’ Brien F. J., A. J. Robinson, and D. J. Kelly. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J. Mech. Behav. Biomed. Mater. 2:512–521, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Buckley, C. T., T. Vinardell, S. D. Thorpe, M. G. Haugh, E. Jones, D. McGonagle, and D. J. Kelly. Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells. J. Biomech. 43:920–926, 2010.CrossRefPubMedGoogle Scholar
  8. 8.
    Buckwalter, J. A., and H. J. Mankin. Articular cartilage: Part II. J. Bone Joint Surg. (American Volume) 79:612–632, 1997.Google Scholar
  9. 9.
    Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4):1497–1508, 1995.PubMedGoogle Scholar
  10. 10.
    Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.CrossRefPubMedGoogle Scholar
  11. 11.
    Byers, B. A., R. L. Mauck, I. E. Chiang, and R. S. Tuan. Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng. A 14:1821–1834, 2008.CrossRefGoogle Scholar
  12. 12.
    Campbell, J. J., D. A. Lee, and D. L. Bader. Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43:455–470, 2006.PubMedGoogle Scholar
  13. 13.
    Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9:641–650, 1991.CrossRefPubMedGoogle Scholar
  14. 14.
    Clark, C. C., B. S. Tolin, and C. T. Brighton. The effect of oxygen tension on proteoglycan synthesis and aggregation in mammalian growth plate chondrocytes. J. Orthop. Res. 9:477–484, 1991.CrossRefPubMedGoogle Scholar
  15. 15.
    Coleman, R. M., N. D. Case, and R. E. Guldberg. Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors. Biomaterials 28:2077–2086, 2007.CrossRefPubMedGoogle Scholar
  16. 16.
    Davisson, T., S. Kunig, A. Chen, R. Sah, and A. Ratcliffe. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 20:842–848, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Demarteau, O., D. Wendt, A. Braccini, M. Jakob, D. Schafer, M. Heberer, and I. Martin. Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem. Biophys. Res. Commun. 310:580–588, 2003.CrossRefPubMedGoogle Scholar
  18. 18.
    Erickson, I. E., A. H. Huang, C. Chung, R. T. Li, J. A. Burdick, and R. L. Mauck. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. A 15:1041–1052, 2009.CrossRefGoogle Scholar
  19. 19.
    Grimshaw, M. J., and R. M. Mason. Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage 8:386–392, 2000.CrossRefPubMedGoogle Scholar
  20. 20.
    Grodzinsky, A. J., M. E. Levenston, M. Jin, and E. H. Frank. Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2:691–713, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Guilak, F., and V. C. Mow. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33:1663–1673, 2000.CrossRefPubMedGoogle Scholar
  22. 22.
    Huang, A. H., M. J. Farrell, M. Kim, and R. L. Mauck. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur. Cell Mater. 19:72–85, 2010.PubMedGoogle Scholar
  23. 23.
    Huang, C. Y., K. L. Hagar, L. E. Frost, Y. Sun, and H. S. Cheung. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323, 2004.CrossRefPubMedGoogle Scholar
  24. 24.
    Huang, C. Y., P. M. Reuben, and H. S. Cheung. Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23:1113–1121, 2005.CrossRefPubMedGoogle Scholar
  25. 25.
    Huang, C. Y. C., P. M. Reuben, G. D’Ppolito, P. C. Schiller, and H. S. Cheung. Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat. Record A: Discov. Mol. Cell. Evol. Biol. 278:428–436, 2004.CrossRefGoogle Scholar
  26. 26.
    Ignat’eva, N. Y., N. A. Danilov, S. V. Averkiev, M. V. Obrezkova, V. V. Lunin, and E. N. Sobol. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J. Anal. Chem. 62:51–57, 2007.CrossRefGoogle Scholar
  27. 27.
    Iwasaki, M., K. Nakata, H. Nakahara, T. Nakase, T. Kimura, K. Kimata, A. I. Caplan, and K. Ono. Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells. Endocrinology 132:1603–1608, 1993.CrossRefPubMedGoogle Scholar
  28. 28.
    Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265–272, 1998.CrossRefPubMedGoogle Scholar
  29. 29.
    Kafienah, W., and T. J. Sims. Biochemical methods for the analysis of tissue-engineered cartilage. Methods Mol. Biol. 238:217–230, 2004.PubMedGoogle Scholar
  30. 30.
    Kelly, D. J., and C. R. Jacobs. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res. C: Embryo Today 90:75–85, 2010.CrossRefGoogle Scholar
  31. 31.
    Kelly, D. J., and P. J. Prendergast. Effect of a degraded core on the mechanical behaviour of tissue-engineered cartilage constructs: a poro-elastic finite element analysis. Med. Biol. Eng. Comput. 42:9–13, 2004.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, 1988.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim, Y. J., R. L. Sah, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch. Biochem. Biophys. 311:1–12, 1994.CrossRefPubMedGoogle Scholar
  34. 34.
    Kisiday, J., D. D. Frisbie, W. McIlwraith, and A. Grodzinsky. Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng. A 15:2817–2824, 2009.CrossRefGoogle Scholar
  35. 35.
    Kisiday, J. D., P. W. Kopesky, C. H. Evans, A. J. Grodzinsky, C. W. McIlwraith, and D. D. Frisbie. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J. Orthop. Res. 26:322–331, 2008.CrossRefPubMedGoogle Scholar
  36. 36.
    Knight, M. M., D. A. Lee, and D. L. Bader. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim. Biophys. Acta Mol. Cell Res. 1405:67–77, 1998.CrossRefGoogle Scholar
  37. 37.
    Knothe Tate, M. L., T. D. Falls, S. H. McBride, R. Atit, and U. R. Knothe. Mechanical modulation of osteochondroprogenitor cell fate. Int. J. Biochem. Cell Biol. 40:2720–2738, 2008.CrossRefPubMedGoogle Scholar
  38. 38.
    Lennon, D. P., and A. I. Caplan. Isolation of human marrow-derived mesenchymal stem cells. Exp. Hematol. 34:1604–1605, 2006.CrossRefPubMedGoogle Scholar
  39. 39.
    Li, Z., L. Kupcsik, S. J. Yao, M. Alini, and M. J. Stoddart. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites. Tissue Eng. A 15:1729–1737, 2009.CrossRefGoogle Scholar
  40. 40.
    Li, Z., L. Kupcsik, S. J. Yao, M. Alini, and M. J. Stoddart. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J. Cell. Mol. Med. Epub May 13, 2009. doi: 10.1111/j.1582-4934.2009.00780.x.
  41. 41.
    Lima, E. G., L. Bian, K. W. Ng, R. L. Mauck, B. A. Byers, R. S. Tuan, G. A. Ateshian, and C. T. Hung. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthritis Cartilage 15:1025–1033, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Mackay, A. M., S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester, and M. F. Pittenger. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4:415–428, 1998.CrossRefPubMedGoogle Scholar
  43. 43.
    Mauck, R. L., B. A. Byers, X. Yuan, and R. S. Tuan. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech. Model. Mechanobiol. 6:113–125, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Mauck, R. L., S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30:1046–1056, 2002.CrossRefPubMedGoogle Scholar
  45. 45.
    Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.CrossRefPubMedGoogle Scholar
  46. 46.
    Mauck, R. L., X. Yuan, and R. S. Tuan. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14:179–189, 2006.CrossRefPubMedGoogle Scholar
  47. 47.
    Miyanishi, K., M. C. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Eng. 12:2253–2262, 2006.CrossRefPubMedGoogle Scholar
  48. 48.
    Miyanishi, K., M. C. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng. 12:1419–1428, 2006.CrossRefPubMedGoogle Scholar
  49. 49.
    Mouw, J. K., J. T. Connelly, C. G. Wilson, K. E. Michael, and M. E. Levenston. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25:655–663, 2007.CrossRefPubMedGoogle Scholar
  50. 50.
    Ng, K. W., R. L. Mauck, C. C. Wang, T. A. Kelly, M. M. Ho, F. Hui Chen, G. A. Ateshian, and C. T. Hung. Duty cycle of deformational loading influences the growth of engineered articular cartilage. Cell. Mol. Bioeng. 2:386–394, 2009.CrossRefPubMedGoogle Scholar
  51. 51.
    Nishimura, K., L. A. Solchaga, A. I. Caplan, J. U. Yoo, V. M. Goldberg, and B. Johnstone. Chondroprogenitor cells of synovial tissue. Arthritis Rheum. 42:2631–2637, 1999.CrossRefPubMedGoogle Scholar
  52. 52.
    Obradovic, B., R. L. Carrier, G. Vunjak-Novakovic, and L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63:197–205, 1999.CrossRefPubMedGoogle Scholar
  53. 53.
    Obradovic, B., J. H. Meldon, L. E. Freed, and G. Vunjak-Novakovic. Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. Aiche J. 46:1860–1871, 2000.CrossRefGoogle Scholar
  54. 54.
    Palmer, G. D., A. Steinert, A. Pascher, E. Gouze, J. N. Gouze, O. Betz, B. Johnstone, C. H. Evans, and S. C. Ghivizzani. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol. Ther. 12:219–228, 2005.CrossRefPubMedGoogle Scholar
  55. 55.
    Palmoski, M. J., and K. D. Brandt. Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27:675–681, 1984.CrossRefPubMedGoogle Scholar
  56. 56.
    Park, S. H., W. Y. Sim, S. W. Park, S. S. Yang, B. H. Choi, S. R. Park, K. Park, and B. H. Min. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Eng. 12:3107–3117, 2006.CrossRefPubMedGoogle Scholar
  57. 57.
    Peterson, L., T. Minas, M. Brittberg, A. Nilsson, E. Sjogren-Jansson, and A. Lindahl. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 374:212–234, 2000.CrossRefPubMedGoogle Scholar
  58. 58.
    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.CrossRefPubMedGoogle Scholar
  59. 59.
    Sah, R. L., Y. J. Kim, J. Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619–636, 1989.CrossRefPubMedGoogle Scholar
  60. 60.
    Tallheden, T., C. Bengtsson, C. Brantsing, E. Sjogren-Jansson, L. Carlsson, L. Peterson, M. Brittberg, and A. Lindahl. Proliferation and differentiation potential of chondrocytes from osteoarthritic patients. Arthritis Res. Ther. 7:R560–R568, 2005.CrossRefPubMedGoogle Scholar
  61. 61.
    Terraciano, V., N. Hwang, L. Moroni, H. B. Park, Z. Zhang, J. Mizrahi, D. Seliktar, and J. Elisseeff. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738, 2007.CrossRefPubMedGoogle Scholar
  62. 62.
    Thorpe, S. D., C. T. Buckley, T. Vinardell, F. J. O’Brien, V. A. Campbell, and D. J. Kelly. Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 377:458–462, 2008.CrossRefPubMedGoogle Scholar
  63. 63.
    Tuan, R. S., G. Boland, and R. Tuli. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 5:32–45, 2003.CrossRefPubMedGoogle Scholar
  64. 64.
    Wagner, D. R., D. P. Lindsey, K. W. Li, P. Tummala, S. E. Chandran, R. L. Smith, M. T. Longaker, D. R. Carter, and G. S. Beaupre. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann. Biomed. Eng. 36:813–820, 2008.CrossRefPubMedGoogle Scholar
  65. 65.
    Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 76:579–592, 1994.PubMedGoogle Scholar
  66. 66.
    Wang, Q. G., J. L. Magnay, B. Nguyen, C. R. Thomas, Z. Zhang, A. J. El Haj, and N. J. Kuiper. Gene expression profiles of dynamically compressed single chondrocytes and chondrons. Biochem. Biophys. Res. Commun. 379:738–742, 2009.CrossRefPubMedGoogle Scholar
  67. 67.
    Williams, C. G., T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 9:679–688, 2003.CrossRefPubMedGoogle Scholar
  68. 68.
    Yoo, J. U., T. S. Barthel, K. Nishimura, L. Solchaga, A. I. Caplan, V. M. Goldberg, and B. Johnstone. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J. Bone Joint Surg. Am. 80:1745–1757, 1998.PubMedGoogle Scholar
  69. 69.
    Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–228, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Stephen D. Thorpe
    • 1
  • Conor T. Buckley
    • 1
  • Tatiana Vinardell
    • 1
  • Fergal J. O’Brien
    • 1
    • 2
  • Veronica A. Campbell
    • 1
    • 3
  • Daniel J. Kelly
    • 1
    Email author
  1. 1.Trinity Centre for BioengineeringSchool of Engineering, Trinity College DublinDublinIreland
  2. 2.Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
  3. 3.Department of PhysiologyTrinity College Institute of Neuroscience, Trinity College DublinDublinIreland

Personalised recommendations