Annals of Biomedical Engineering

, Volume 38, Issue 6, pp 2226–2236 | Cite as

Fusion of Concentrically Layered Tubular Tissue Constructs Increases Burst Strength



Tubular tissue constructs prepared from neonatal human dermal fibroblasts entrapped in fibrin gel were incubated on a mandrel for three weeks to allow for initial fibrin remodeling into tissue before being concentrically layered and incubated for an additional three weeks on the mandrel. Upon harvest, double layer constructs were not statistically different from single layer control constructs in terms of length, collagen density, cell density, tensile modulus, or ultimate tensile strength. However, the thickness and burst pressure were both approximately twice the single layer control values. Metabolically active cells were detected at the interface, and scanning electron microscopy revealed fiber structures bridging the two layers, co-localizing with the cells, which exhibited minimal migration across the layers. In contrast, double layer constructs where tissue fusion was prohibited by mechanical distraction of the layers showed no increase in burst pressure despite having increased thickness and the same collagen and cell densities of the single layer control constructs; moreover, the burst failure occurred sequentially in the layers in contrast to simultaneous failure for the fused double layer constructs. This study provides insight into the nature of the interface and the role of cell behavior when tissue fusion occurs between two layers of bioartificial tissue in vitro. It also suggests a method for improving the burst strength of fibrin-based tubular tissue constructs by increasing the construct thickness via concentrically layering and fusing two constructs.


Tissue engineering Vascular engineering Tissue-engineered vascular graft Tissue-engineered blood vessel Tissue fusion 


  1. 1.
    American Heart Association. Cardiovascular Disease Statistics, 2009.
  2. 2.
    Auger, F. A., P. D’Orleans-Juste, and L. Germain. Adventitia contribution to vascular contraction: hints provided by tissue-engineered substitutes. Cardiovasc. Res. 75:669–678, 2007.CrossRefPubMedGoogle Scholar
  3. 3.
    Auger, F. A., M. Remy-Zolghadri, G. Grenier, and L. Germain. A truly new approach for tissue engineering: the LOEX self-assembly technique. Ernst Schering Res. Found. Workshop 35:73–88, 2002.Google Scholar
  4. 4.
    Dahl, S. L., C. Rhim, Y. C. Song, and L. E. Niklason. Mechanical properties and compositions of tissue engineered and native arteries. Ann. Biomed. Eng. 35:348–355, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Deutsch, M., J. Meinhart, T. Fischlein, P. Preiss, and P. Zilla. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126:847–855, 1999.PubMedGoogle Scholar
  6. 6.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, pp. 2–22, 1993.Google Scholar
  7. 7.
    Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60:607–612, 2002.CrossRefPubMedGoogle Scholar
  8. 8.
    Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. A 66:550–561, 2003.CrossRefPubMedGoogle Scholar
  9. 9.
    Grouf, J. L., A. M. Throm, J. L. Balestrini, K. A. Bush, and K. L. Billiar. Differential effects of EGF and TGF-beta1 on fibroblast activity in fibrin-based tissue equivalents. Tissue Eng. 13:799–807, 2007.CrossRefPubMedGoogle Scholar
  10. 10.
    Hansen, M. E., K. Yucel, J. Megerman, G. J. L’Italien, W. M. Abbott, and A. C. Waltmaff. In vivo determination of human arterial compliance: preliminary investigation of a new technique. Cardiovasc. Intervent. Radiol. 17:22–26, 1994.Google Scholar
  11. 11.
    Isenberg, B. C., C. Williams, and R. T. Tranquillo. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann. Biomed. Eng. 34:971–985, 2006.CrossRefPubMedGoogle Scholar
  12. 12.
    Isenberg, B. C., C. Williams, and R. T. Tranquillo. Small-diameter artificial arteries engineered in vitro. Circ. Res. 98:25–35, 2006.CrossRefPubMedGoogle Scholar
  13. 13.
    Iwasaki, K., K. Kojima, S. Kodama, A. C. Paz, M. Chambers, M. Umezu, and C. A. Vacanti. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 118:S52–S57, 2008.CrossRefPubMedGoogle Scholar
  14. 14.
    Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl Acad. Sci. USA 101:2864–2869, 2004.CrossRefPubMedGoogle Scholar
  15. 15.
    Jakab, K., C. Norotte, B. Damon, F. Marga, A. Neagu, C. L. Besch-Williford, A. Kachurin, K. H. Church, H. Park, V. Mironov, R. Markwald, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 14:413–421, 2008.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, 1988.CrossRefPubMedGoogle Scholar
  17. 17.
    Konig, G., T. McAllister, N. Dusserre, S. Garrido, C. Iyican, A. Marini, A. Fiorillo, H. Avila, W. Wystrychowski, K. Zagalski, M. Maruszewski, A. Jones, L. Cierpka, L. de la Fuente, and N. L’Heureux. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8):1542–1550, 2009 (Epub 2008 Dec 25).CrossRefPubMedGoogle Scholar
  18. 18.
    L’Heureux, N., N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12:361–365, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    L’Heureux, N., N. Dusserre, A. Marini, S. Garrido, L. de la Fuente, and T. McAllister. Technology insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 4:389–395, 2007.CrossRefPubMedGoogle Scholar
  20. 20.
    L’Heureux, N., T. N. McAllister, and L. M. de la Fuente. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357:1451–1453, 2007.CrossRefPubMedGoogle Scholar
  21. 21.
    L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56, 1998.PubMedGoogle Scholar
  22. 22.
    Lu, X., and Y. Kang. Cell fusion as a hidden force in tumor progression. Cancer Res. 69:8536–8539, 2009.CrossRefPubMedGoogle Scholar
  23. 23.
    McAllister, T. N., M. Maruszewski, S. A. Garrido, W. Wystrychowski, N. Dusserre, A. Marini, K. Zagalski, A. Fiorillo, H. Avila, X. Manglano, J. Antonelli, A. Kocher, M. Zembala, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446, 2009.CrossRefPubMedGoogle Scholar
  24. 24.
    Metcalfe, A. D., and M. W. Ferguson. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4:413–437, 2007.CrossRefPubMedGoogle Scholar
  25. 25.
    Neidert, M. R., E. S. Lee, T. R. Oegema, and R. T. Tranquillo. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials 23:3717–3731, 2002.CrossRefPubMedGoogle Scholar
  26. 26.
    Nerem, R. M. Tissue engineering a blood vessel substitute: the role of biomechanics. Yonsei Med. J. 41:735–739, 2000.PubMedGoogle Scholar
  27. 27.
    Nieponice, A., L. Soletti, J. Guan, B. M. Deasy, J. Huard, W. R. Wagner, and D. A. Vorp. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 29:825–833, 2008.Google Scholar
  28. 28.
    O’Cearbhaill, E., M. Murphy, F. Barry, P. McHugh, and V. Barron. Behavior of human mesenchymal stem cells in fibrin-based vascular tissue engineering constructs. Ann. Biomed. Eng., 2010 (Epub ahead of Print).Google Scholar
  29. 29.
    Opitz, F., K. Schenke-Layland, T. U. Cohnert, B. Starcher, K. J. Halbhuber, D. P. Martin, and U. A. Stock. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc. Res. 63:719–730, 2004.CrossRefPubMedGoogle Scholar
  30. 30.
    Perez-Pomares, J. M., and R. A. Foty. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 28:809–821, 2006.CrossRefPubMedGoogle Scholar
  31. 31.
    Ravi, S., Z. Qu, and E. L. Chaikof. Polymeric materials for tissue engineering of arterial substitutes. Vascular 17(Suppl. 1):S45–S54, 2009.PubMedGoogle Scholar
  32. 32.
    Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.CrossRefPubMedGoogle Scholar
  33. 33.
    Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl Acad. Sci. USA 105:6537–6542, 2008.CrossRefPubMedGoogle Scholar
  34. 34.
    Thompson, M. M., J. S. Budd, S. L. Eady, R. F. James, and P. R. Bell. Effect of pulsatile shear stress on endothelial attachment to native vascular surfaces. Br. J. Surg. 81:1121–1127, 1994.CrossRefPubMedGoogle Scholar
  35. 35.
    Tower, T. T., M. R. Neidert, and R. T. Tranquillo. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30:1221–1233, 2002.CrossRefPubMedGoogle Scholar
  36. 36.
    Tranquillo, R. T. The tissue-engineered small-diameter artery. Ann. N. Y. Acad. Sci. 961:251–254, 2002.CrossRefPubMedGoogle Scholar
  37. 37.
    Tschoeke, B., T. C. Flanagan, M. Harwoko, S. Koch, T. Deichmann, V. Ellå, J. S. Sachweh, M. Kellomåki, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. Part A 15(8):1909–1918, 2009.Google Scholar
  38. 38.
    van Andel, C. J., P. V. Pistecky, and C. Borst. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac. Surg. 76:58–64, 2003 (discussion 64-5).CrossRefPubMedGoogle Scholar
  39. 39.
    Voorhees, Jr., A. B., A. Jaretzki, 3rd, and A. H. Blakemore. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann. Surg. 135:332–336, 1952.CrossRefPubMedGoogle Scholar
  40. 40.
    Weinberg, C. B., and E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400, 1986.CrossRefPubMedGoogle Scholar
  41. 41.
    Woessner, Jr., J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch. Biochem. Biophys. 93:440–447, 1961.CrossRefPubMedGoogle Scholar
  42. 42.
    Yao, L., J. Liu, and S. T. Andreadis. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels. Pharm. Res. 25:1212–1221, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Chemical Engineering & Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations