Annals of Biomedical Engineering

, Volume 38, Issue 9, pp 2805–2816 | Cite as

Endothelial Nitric Oxide Production and Transport in Flow Chambers: The Importance of Convection

  • A. M. Plata
  • S. J. Sherwin
  • R. Krams


A computational model of Nitric Oxide (NO) production and transport within a parallel-plate flow chamber coated with endothelial cells is presented. The relationship between NO concentration and Wall Shear Stress (WSS) at the endothelium is investigated in detail. An increase in WSS is associated with two phenomena: enhanced NO production by the endothelial cells, and an increase in the velocity at which NO is convected out of the chamber. These two phenomena have opposite effects on endothelial NO concentration. In physiologically realistic cases, the balance between them is found to vary as WSS is raised, resulting in a complex non-monotonic dependence of endothelial NO concentration on WSS. Also, it is found that a NO concentration boundary layer develops within the chamber, leading to substantial spatial variations in NO concentration along the length of the device. Finally, the implications of a negative feedback mechanism (that affects NO production) are presented. The results emphasize the role of convection on NO transport within flow chambers, which has been overlooked or misinterpreted in most previous theoretical studies. It is hoped that the conclusions of this study can be used to aid accurate interpretation of related experimental data.


Shear stress Biotransport Endothelium 



This study is funded by Fundación Caja Madrid and the Engineering and Physical Sciences Research Council. The authors would like to thank Prof. Peter Weinberg and Dr. Peter Vincent for useful discussions throughout the development of this work, and the British Heart Foundation Research Excellence Centre for support.


  1. 1.
    Azarov, I., K. Huang, S. Basu, M. Gladwin, N. Hogg, and D. Kim-Shapiro. Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. J. Biol. Chem. 280(47):39,024–39,032, 2005.CrossRefGoogle Scholar
  2. 2.
    Butler, A., I. Megson, and P. Wright. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim. Biophys. Acta (BBA) - General Subjects 1425(1):168–176, 1998.CrossRefGoogle Scholar
  3. 3.
    Caro, C., J. Fitz-Gerald, and R. Schroter. Arterial wall shear and distribution of early atheroma in man. Nature 223(5211):1159–1160, 1969.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen, K., R. Pittman, and A. Popel. Nitric oxide in the vasculature where does it come from and where does it go? A quantitative perspective. Antioxid. Redox Signal. 10(7):1185–1198, 2008.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen, K., and A. S. Popel. Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic. Biol. Med. 41:668–680, 2006CrossRefPubMedGoogle Scholar
  6. 6.
    Cheng, C., R. van Haperen, M. de Waard, L. van Damme, D. Tempel, L. Hanemaaijer, G. van Cappellen, J. Bos, C. Slager, D. Duncker, A. van der Steen, R. Crom, and R. Krams. Shear stress affects the intracellular distribution of enos: direct demonstration by a novel in vivo technique. Blood 106(12):3691–3698, 2005.CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng, C., D. Tempel, A. Oostlander, F. Helderman, F. Gijsen, J. Wentzel, R. van Haperen, D. Haitsma, P. Serruys, A. F. W. van der Steen, R. de Crom, and R. Krams. Rapamycin modulates the enos vs. shear stress relationship. Cardiovasc. Res. 78(1):123–129, 2008.CrossRefPubMedGoogle Scholar
  8. 8.
    David, T. Wall shear stress modulation of atp/adp concentration at the endothelium. Ann. Biomed. Eng. 31(10):1231–1237, 2003.CrossRefGoogle Scholar
  9. 9.
    Diem, K., editor. Documenta Geigy, Scientzjic Tables. Geigy Pharmaceuticals, Div. of Geigy Chemicals Corp., 1962.Google Scholar
  10. 10.
    Ethier, R. Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30(4):461–471, 2002.CrossRefPubMedGoogle Scholar
  11. 11.
    Fadel, A., K. Barbee, and D. Jaron. A computational model of nitric oxide production and transport in a parallel plate flow chamber. Ann. Biomed. Eng. 37(5):943–954, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Frangos, J., T. Huang, and C. Clark. Steady shear and step changes in shear stimulate endothelium via independent mechanism—superposition of transient and sustained nitric oxide production. Biochem. Biophys. Res. Commun. 224:660–665, 1996.CrossRefPubMedGoogle Scholar
  13. 13.
    Grumbach, I., C. Wei, S. Mertens, and D. Harrison. A negative feedback mechanism involving nitric oxide and nuclear factor kappa-b modulates endothelial nitric oxide synthase transcription. J. Mol. Cell. Cardiol. 39(4):595–603, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Hakim, T., K. Sugimori, E. Camporesi, and G. Anderson. Half-life of nitric oxide in aqueous solutions with and without haemoglobin. Physiol. Meas. 17(4):267–277, 1996.CrossRefPubMedGoogle Scholar
  15. 15.
    Kanai, A., H. Strauss, G. Truskey, A. Crews, S. Grunfeld, and T. Malinski. Shear stress induces atp-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ. Res. 77(2):284–293, 1995PubMedGoogle Scholar
  16. 16.
    Kavdia, M., and A. Popel. Wall shear stress differentially affects no level in arterioles for volume expanders and hb-based O2 carriers. Microvasc. Res. 66(1):49–58, 2003.CrossRefPubMedGoogle Scholar
  17. 17.
    Kelm, M. Nitric oxide metabolism and breakdown. Biochim. Biophys. Acta 1411:273–289, 1999.Google Scholar
  18. 18.
    Kharitonov, V., A. Sundquist, and V. Sharma. Kinetics of nitric oxide autoxidation in aqueous solution. J. Biol. Chem. 8(269):5881–5883, 1994.Google Scholar
  19. 19.
    Lewis, R., and W. Deen. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem. Res. Toxicol. 7(4):568–574, 2002.CrossRefGoogle Scholar
  20. 20.
    Loscalzo, J. Endothelium, nitric oxide, and atherosclerosis: from basic mechanisms to clinical implications. Circulation 102(8):e51, 2000.Google Scholar
  21. 21.
    Malek, A., S. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042, 1999.CrossRefPubMedGoogle Scholar
  22. 22.
    Malinski, T., Z. Taha, S. Grunfeld, S. Patton, M. Kaptruczak, and P. Tomboulian. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem. Biophys. Res. Commun. 193:365–375, 1993.Google Scholar
  23. 23.
    Nagano, T. Practical methods for detection of nitric oxide. Luminescence 14(6):283–290, 1999.CrossRefPubMedGoogle Scholar
  24. 24.
    Nakatsubo, N., H. Kojima, K. Kikuchi, H. Nagoshi, Y. Hirata, D. Maeda, Y. Imai, T. Irimura, and T. Nagano. Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett. 427(2):263–266, 1998.CrossRefPubMedGoogle Scholar
  25. 25.
    Plank, M., D. Wall, and T. David. The role of endothelial calcium and nitric oxide in the localisation of atherosclerosis. Math. Biosci. 207(1):26–39, 2007.CrossRefPubMedGoogle Scholar
  26. 26.
    Probstein, R. F. Physicochemical Hydrodynamics: An Introduction. JohnWiley and Sons Inc., 2003.Google Scholar
  27. 27.
    Qiu, W., D. Kass, Q. Hu, and R. Ziegelstein. Determinants of shear stress-stimulated endothelial nitric oxide production assessed in real-time by 4,5-diaminofluorescein fluorescence. Biochem. Biophys. Res. Commun. 286(2):328–335, 2001.CrossRefPubMedGoogle Scholar
  28. 28.
    Sherwin, S. J., and G. Karniakadis. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, 2005.Google Scholar
  29. 29.
    Smith, K., L. Moore, and H. Layton. Advective transport of nitric oxide in a mathematical model of the afferent arteriole. Am. J. Physiol. Renal. Physiol. 284(5):1080–1096, 2003.Google Scholar
  30. 30.
    Vaughn, M. W., L. Kuo, and J. Liao. Effective diffusion distance of nitric oxide in the microcirculation. AJP Heart Circ. Physiol. 274:1705–1714, 1998.Google Scholar
  31. 31.
    White, C., and J. Frangos. The shear stress of it all: the cell membrane and mechanochemical transduction. Phil. Trans. R. Soc. B 362:1459–1467, 2007.CrossRefPubMedGoogle Scholar
  32. 32.
    Wiesner, T., B. Berk, and R. Nerem. A mathematical model of the cytosolic-free calcium response in endothelial cells to fluid shear stress. Proc. Natl Acad. Sci. USA 94(8):3726–3731, 1997.CrossRefPubMedGoogle Scholar
  33. 33.
    Wink, D., J. Darbyshire, R. Nims, J. Saavedra, and P. Ford. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the nitric oxide/oxygen reaction. Chem. Res. Toxicol. 6(1):23–27, 2002.CrossRefGoogle Scholar
  34. 34.
    Yamamoto, K., T. Sokabe, T. Matsumoto, K. Yoshimura, M. Shibata, N. Ohura, T. Fukuda, T. Sato, K. Sekine, S. Kato, M. Isshiki, T. Fujita, M. Kobayashi, K. Kawamura, H. Masuda, A. Kamiya, and J. Ando. Impaired flow-dependent control of vascular tone and remodeling in p2x4-deficient mice. Nat. Med. 12(1):133–137, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Department of AeronauticsImperial College LondonLondonUK
  2. 2.Department of BioengineeringImperial College LondonLondonUK

Personalised recommendations