Annals of Biomedical Engineering

, Volume 38, Issue 6, pp 1977–1988 | Cite as

Cell Attachment–Detachment Control on Temperature-Responsive Thin Surfaces for Novel Tissue Engineering

  • Yoshikazu Kumashiro
  • Masayuki Yamato
  • Teruo Okano


Temperature-responsive intelligent surfaces, prepared by the modification of an interface mainly with poly(N-isopropylacrylamide) and its derivatives, have been investigated. Such surfaces exhibit temperature-responsive hydrophilic/hydrophobic alterations with external temperature changes, which, in turn, result in thermally modulated attachment and detachment with cells. The advantage of this system is that cells cultured on such temperature-responsive surfaces can be recovered as single cells and/or confluent cell sheets, while keeping the deposited extracellular matrix intact, simply by lowering the temperature without conventional enzymatic treatment. Here, we focus and compare various methods of producing temperature-responsive surfaces for controlling cell attachment/detachment. Spontaneous cell attachment and detachment using several types of temperature-responsive surfaces are mentioned and various effects, such as film thickness and polymer conformation, are discussed. In addition, the development of the next generation of temperature-responsive surfaces using modifications of the polymer coating to allow for rapid cell recovery is summarized.


Temperature-responsive surface Extra cellular matrix N-isopropylacrylamide Cell attachment Cell detachment Polymeric thin surface 



Acrylic acid


Atomic force microscopy


Attenuated total reflection-Fourier transform


Atom transfer radical polymerization






Electron beam


Extra cellular matrix


Bovine aortic endothelial cell


1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide




Human periodontal ligament cells


Human umbilical vein endothelial cells




Lower critical solution temperature


Madin-Darby canine kidney




Poly(ethylene glycol)


Rat calvarial osteoblasts






Tissue Culture Polystyrene


Time of flight secondary ion mass spectrometer


X-ray photoelectron spectroscopy



The present research was financially supported by Formation of Innovation Center for fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors are grateful to Dr. N. Ueno (Tokyo Women’s Medical University) for her valuable comments and suggestions.


  1. 1.
    Akiyama, Y., A. Kikuchi, M. Yamato, and T. Okano. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20(13):5506–5511, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Alarco’n, C. H., T. Farhan, V. L. Osborne, W. T. S. Huck, and C. Alexander. Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J. Mater. Chem. 15(21):2089–2094, 2005.CrossRefGoogle Scholar
  3. 3.
    Aoyagi, T., M. Ebara, K. Sakai, Y. Sakurai, and T. Okano. Novel bifunctional polymer with reactivity and temperature sensitivity. J. Biomater. Sci. Polym. Ed. 11:101–110, 2000.CrossRefPubMedGoogle Scholar
  4. 4.
    Barrandon, Y., and H. Green. Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor. Cell 50(7):1131–1137, 1987.CrossRefPubMedGoogle Scholar
  5. 5.
    Canavan, H. E., X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner. Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J. Biomed. Mater. Res. A 75A(1):1–13, 2005.CrossRefGoogle Scholar
  6. 6.
    Canavan, H. E., X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 21(5):1949–1955, 2004.CrossRefGoogle Scholar
  7. 7.
    Canavan, H. E., D. J. Graham, X. Cheng, B. D. Ratner, and D. G. Castner. Comparison of native extracellular matrix with adsorbed protein films using secondary ion mass spectrometry. Langmuir 23(1):50–56, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng, X., H. E. Canavan, M. J. Stein, J. R. Hull, S. J. Kweskin, M. S. Wagner, G. A. Somorjai, D. G. Castner, and B. D. Ratner. Surface chemical and mechanical properties of plasma-polymerized N-isopropylacrylamide. Langmuir 21(17):7833–7841, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Chung, S. Y. Bladder tissue-engineering: a new practical solution? Lancet 367(9518):1215–1216, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    da Silva, R. M. P., J. F. Mano, and R. L. Reis. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol. 25(12):577–583, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    Ebara, M., M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano. A novel approach to observing synergy effects of PHSRN on integrin-RGD binding using intelligent surfaces. Adv. Mater. 20(16):3034–3038, 2008.CrossRefGoogle Scholar
  12. 12.
    Ebara, M., M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano. Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 10(7–8):1125–1135, 2004.PubMedGoogle Scholar
  13. 13.
    Ebara, M., M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5(2):505–510, 2004.CrossRefPubMedGoogle Scholar
  14. 14.
    Ebara, M., M. Yamato, M. Hirose, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 4(2):344–349, 2003.CrossRefPubMedGoogle Scholar
  15. 15.
    Fillinger, M. F., E. R. Reinitz, R. A. Schwartz, D. E. Resetarits, A. M. Paskanik, D. Bruch, and C. E. Bredenberg. Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts. J. Vasc. Surg. 11(4):556–566, 1990.CrossRefPubMedGoogle Scholar
  16. 16.
    Freed, L. E., G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer. Biodegradable polymer scaffolds for tissue engineering. Nat. Biotechnol. 12(7):689–693, 1994.CrossRefGoogle Scholar
  17. 17.
    Fukumori, K., Y. Akiyama, M. Yamato, J. Kobayashi, K. Sakai, and T. Okano. Temperature-responsive glass coverslips with an ultrathin poly (N-isopropylacrylamide) layer. Acta Biomater. 5(1):470–476, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Guillaume-Gentil, O., Y. Akiyama, M. Schuler, C. Tang, M. Textor, M. Yamato, T. Okano, and J. Vörös. Polyelectrolyte coatings with a potential for electronic control and cell sheet engineering. Adv. Mater. 20(3):560–565, 2008.CrossRefGoogle Scholar
  19. 19.
    Gupta, S., P. Rajvanshi, R. Sokhi, S. Slehria, A. Yam, A. M. Kerr, and P. Novikoff. Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium. Hepatology 29(2):509–519, 1999.CrossRefPubMedGoogle Scholar
  20. 20.
    Heskins, M., and J. E. Guillet. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. A 2(8):1441–1455, 1968.CrossRefGoogle Scholar
  21. 21.
    Houseman, B. T., J. H. Huh, S. J. Kron, and M. Mrksich. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20:270–274, 2002.CrossRefPubMedGoogle Scholar
  22. 22.
    Ibusuki, S., Y. Iwamoto, and T. Matsuda. System-engineered cartilage using poly(N-isopropylacrylamide)-grafted gelatin as in situ-formable scaffold: in vivo performance. Tissue Eng. 9(6):1133–1142, 2003.CrossRefPubMedGoogle Scholar
  23. 23.
    Idota, N., A. Kikuchi, J. Kobayashi, Y. Akiyama, and T. Okano. Thermal modulated interaction of aqueous steroids using polymer-grafted capillaries. Langmuir 22(1):425–430, 2006.CrossRefPubMedGoogle Scholar
  24. 24.
    Idota, N., A. Kikuchi, J. Kobayashi, K. Sakai, and T. Okano. Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries. Adv. Mater. 17(22):2723–2727, 2005.CrossRefGoogle Scholar
  25. 25.
    Irvine, D. J., A. M. Mayes, and L. G. Griffith. Nanoscale clustering of RGD peptides at surfaces using comb polymers. 1. Synthesis and characterization of comb thin films. Biomacromolecules 2(1):85–94, 2000.CrossRefGoogle Scholar
  26. 26.
    Iwata, T., M. Yamato, H. Tsuchioka, R. Takagi, S. Mukobata, K. Washio, T. Okano, and I. Ishikawa. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 30(14):2716–2723, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    Jones, D. M., J. R. Smith, W. T. S. Huck, and C. Alexander. Variable adhesion of micropatterned thermoresponsive polymer brushes: AFM investigations of poly(N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations. Adv. Mater. 14(16):1130–1134, 2002.CrossRefGoogle Scholar
  28. 28.
    Keselowsky, B. G., D. M. Collard, and A. J. Garcia. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102(17):5953–5957, 2005.CrossRefPubMedGoogle Scholar
  29. 29.
    Kikuchi, A., and T. Okano. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Controlled Release 101(1–3):69–84, 2005.CrossRefGoogle Scholar
  30. 30.
    Kobayashi, J., A. Kikuchi, K. Sakai, and T. Okano. Aqueous chromatography utilizing pH-/temperature responsive polymer stationary phases to separate ionic bioactive compounds. Anal. Chem. 73(9):2027–2033, 2001.CrossRefPubMedGoogle Scholar
  31. 31.
    Koo, L. Y., D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell Sci 115(7):1423–1433, 2002.PubMedGoogle Scholar
  32. 32.
    Kushida, A., M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, and T. Okano. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J. Biomed. Mater. Res. 45(4):355–362, 1999.CrossRefPubMedGoogle Scholar
  33. 33.
    Kushida, A., M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, and T. Okano. Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. J. Biomed. Mater. Res. 51(2):216–223, 2000.CrossRefPubMedGoogle Scholar
  34. 34.
    Kwon, O. H., A. Kikuchi, M. Yamato, and T. Okano. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials 24(7):1223–1232, 2003.CrossRefGoogle Scholar
  35. 35.
    Kwon, O. H., A. Kikuchi, M. Yamato, Y. Sakurai, and T. Okano. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed. Mater. Res. 50(1):82–89, 2000.CrossRefPubMedGoogle Scholar
  36. 36.
    Langer, R., and J. Vacanti. Tissue engineering. Science 260(5110):920–926, 1993.CrossRefPubMedGoogle Scholar
  37. 37.
    Langer, R., and J. Vacanti. Tissue engineering: the challenges ahead. Sci. Am. 280(4):86–89, 1999.CrossRefPubMedGoogle Scholar
  38. 38.
    Leahy, D. J., I. Aukhil, and H. P. Erickson. 2 Dimensional crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84(1):155–164, 1996.CrossRefPubMedGoogle Scholar
  39. 39.
    Leahy, D. J., W. A. Hendrickson, I. Aukhil, and H. P. Erickson. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258(5084):987–991, 1992.CrossRefPubMedGoogle Scholar
  40. 40.
    Massia, S. P., and J. A. Hubbell. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114(5):1089–1100, 1991.CrossRefPubMedGoogle Scholar
  41. 41.
    Matsuda, T. Poly(N-isopropylacrylamide)-grafted gelatin as a thermoresponsive cell-adhesive, mold-releasable material for shape-engineered tissues. J. Biomater. Sci. Polym. Ed. 15:947–955, 2004.CrossRefPubMedGoogle Scholar
  42. 42.
    Memon, I. A., Y. Sawa, N. Fukushima, G. Matsumiya, S. Miyagawa, S. Taketani, S. K. Sakakida, H. Kondoh, A. N. Aleshin, T. Shimizu, T. Okano, and H. Matsuda. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J. Thorac. Cardiovasc. Surg. 130(5):1333–1341, 2005.CrossRefPubMedGoogle Scholar
  43. 43.
    Mizutani, A., A. Kikuchi, M. Yamato, H. Kanazawa, and T. Okano. Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials 29(13):2073–2081, 2008.CrossRefPubMedGoogle Scholar
  44. 44.
    Nagase, K., J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa, and T. Okano. Interfacial property modulation of thermoresponsive polymer brush surfaces and their interaction with biomolecules. Langmuir 23(18):9409–9415, 2007.CrossRefPubMedGoogle Scholar
  45. 45.
    Nagase, K., J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa, and T. Okano. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Langmuir 24(2):511–517, 2008.CrossRefPubMedGoogle Scholar
  46. 46.
    Nakayama, M., J. E. Chung, T. Miyazaki, M. Yokoyama, K. Sakai, and T. Okano. Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles. React. Funct. Polym. 67(11):1398–1407, 2007.CrossRefGoogle Scholar
  47. 47.
    Nakayama, M., and T. Okano. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules 6(4):2320–2327, 2005.CrossRefPubMedGoogle Scholar
  48. 48.
    Nishida, K., M. Yamato, Y. Hayashida, K. Watanabe, N. Maeda, H. Watanabe, K. Yamamoto, S. Nagai, A. Kikuchi, Y. Tano, and T. Okano. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77(3):379–385, 2004.CrossRefPubMedGoogle Scholar
  49. 49.
    Nishida, K., M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, and Y. Tano. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 351(12):1187–1196, 2004.CrossRefPubMedGoogle Scholar
  50. 50.
    Ohashi, K., T. Yokoyama, M. Yamato, H. Kuge, H. Kanehiro, M. Tsutsumi, T. Amanuma, H. Iwata, J. Yang, T. Okano, and Y. Nakajima. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat. Med. 13(7):880–885, 2007.CrossRefPubMedGoogle Scholar
  51. 51.
    Ohki, T., M. Yamato, D. Murakami, R. Takagi, J. Yang, H. Namiki, T. Okano, and K. Takasaki. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut 55(12):1704–1710, 2006.CrossRefPubMedGoogle Scholar
  52. 52.
    Ohya, S., S. Kidoaki, and T. Matsuda. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin hydrogel surfaces: interrelationship between microscopic structure and mechanical property of surface regions and cell adhesiveness. Biomaterials 26(16):3105, 2005.CrossRefPubMedGoogle Scholar
  53. 53.
    Ohya, S., and T. Matsuda. Poly (N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. J. Biomater. Sci. Polym. Ed. 16:809–827, 2005.CrossRefPubMedGoogle Scholar
  54. 54.
    Okano, T., N. Yamada, M. Okuhara, H. Sakai, and Y. Sakurai. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16(4):297–303, 1995.CrossRefPubMedGoogle Scholar
  55. 55.
    Okano, T., N. Yamada, H. Sakai, and Y. Sakurai. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res. 27(10):1243–1251, 1993.CrossRefPubMedGoogle Scholar
  56. 56.
    Pan, Y. V., R. A. Wesley, R. Luginbuhl, D. D. Denton, and B. D. Ratner. Plasma polymerized N-isopropylacrylamide: synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2(1):32–36, 2000.CrossRefGoogle Scholar
  57. 57.
    Pytela, R., M. D. Pierschbacher, M. H. Ginsberg, E. F. Plow, and E. Ruoslahti. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp-specific adhesion receptors. Science 231(4745):1559–1562, 1986.CrossRefPubMedGoogle Scholar
  58. 58.
    Shimizu, T., H. Sekine, Y. Isoi, M. Yamato, A. Kikuchi, and T. Okano. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 12(3):499–507, 2006.CrossRefPubMedGoogle Scholar
  59. 59.
    Shimizu, T., H. Sekine, J. Yang, Y. Isoi, M. Yamato, A. Kikuchi, E. Kobayashi, and T. Okano. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. Faseb J. 20(1):708–710, 2006.PubMedGoogle Scholar
  60. 60.
    Shimizu, T., M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90(3):E40–E48, 2002.CrossRefPubMedGoogle Scholar
  61. 61.
    Shimizu, T., M. Yamato, A. Kikuchi, and T. Okano. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24(13):2309–2316, 2003.CrossRefPubMedGoogle Scholar
  62. 62.
    Takei, Y. G., T. Aoki, K. Sanui, N. Ogata, T. Okano, and Y. Sakurai. Temperature-responsive bioconjugates. 1. Synthesis of temperature-responsive oligomers with reactive end groups and their coupling to biomolecules. Bioconjug. Chem. 4(1):42–46, 1993.CrossRefPubMedGoogle Scholar
  63. 63.
    Takei, Y. G., T. Aoki, K. Sanui, N. Ogata, Y. Sakurai, and T. Okano. Dynamic contact angle measurement of temperature-responsive surface properties for poly(N-isopropylacrylamide) grafted surfaces. Macromolecules 27(21):6163–6166, 1994.CrossRefGoogle Scholar
  64. 64.
    Takezawa, T., Y. Mori, and K. Yoshizato. Cell culture on a thermo-responsive polymer surface. Nat. Biotechnol. 8(9):854–856, 1990.CrossRefGoogle Scholar
  65. 65.
    Takezawa, T., M. Yamazaki, Y. Mori, T. Yonaha, and K. Yoshizato. Morphological and immuno-cytochemical characterization of a hetero-spheroid composed of fibroblasts and hepatocytes. J. Cell Sci. 101(3):495–501, 1992.PubMedGoogle Scholar
  66. 66.
    Todaro, G. J., and H. Green. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17(2):299–313, 1963.CrossRefPubMedGoogle Scholar
  67. 67.
    von Recum, H., S. W. Kim, A. Kikuchi, M. Okuhara, Y. Sakurai, and T. Okano. Novel thermally reversible hydrogel as detachable cell culture substrate. J. Biomed. Mater. Res. 40(4):631–639, 1998.CrossRefGoogle Scholar
  68. 68.
    von Recum, H., A. Kikuchi, M. Yamato, Y. Sakurai, T. Okano, and S. W. Kim. Growth factor and matrix molecules preserve cell function on thermally responsive culture surfaces. Tissue Eng. 5(3):251–265, 1999.CrossRefGoogle Scholar
  69. 69.
    Whitesides, G. M., J. P. Mathias, and C. T. Seto. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254(5036):1312–1319, 1991.CrossRefPubMedGoogle Scholar
  70. 70.
    Yamada, N., T. Okano, K. Sakai, F. Karikusa, Y. Sawasaki, and Y. Sakurai. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol. Rapid Commun. 11(11):571–576, 1990.CrossRefGoogle Scholar
  71. 71.
    Yamato, M., C. Konno, A. Kushida, M. Hirose, M. Utsumi, A. Kikuchi, and T. Okano. Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity. Biomaterials 21(10):981–986, 2000.CrossRefPubMedGoogle Scholar
  72. 72.
    Yamato, M., M. Okuhara, F. Karikusa, A. Kikuchi, Y. Sakurai, and T. Okano. Signal transduction and cytoskeletal reorganization are required for cell detachment from cell culture surfaces grafted with a temperature-responsive polymer. J. Biomed. Mater. Res. 44(1):44–52, 1999.CrossRefPubMedGoogle Scholar
  73. 73.
    Yang, J., M. Yamato, T. Shimizu, H. Sekine, K. Ohashi, M. Kanzaki, T. Ohki, K. Nishida, and T. Okano. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28(34):5033–5043, 2007.CrossRefPubMedGoogle Scholar
  74. 74.
    Yoshida, R., K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, and T. Okano. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374(6519):240–242, 1995.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Yoshikazu Kumashiro
    • 1
  • Masayuki Yamato
    • 1
  • Teruo Okano
    • 1
  1. 1.Institute of Advanced Biomedical Engineering and ScienceTokyo Women’s Medical University (TWIns)TokyoJapan

Personalised recommendations