Annals of Biomedical Engineering

, Volume 38, Issue 6, pp 2121–2141 | Cite as

Emerging Techniques in Stratified Designs and Continuous Gradients for Tissue Engineering of Interfaces

  • Nathan H. Dormer
  • Cory J. Berkland
  • Michael S. DetamoreEmail author


Interfacial tissue engineering is an emerging branch of regenerative medicine, where engineers are faced with developing methods for the repair of one or many functional tissue systems simultaneously. Early and recent solutions for complex tissue formation have utilized stratified designs, where scaffold formulations are segregated into two or more layers, with discrete changes in physical or chemical properties, mimicking a corresponding number of interfacing tissue types. This method has brought forth promising results, along with a myriad of regenerative techniques. The latest designs, however, are employing “continuous gradients” in properties, where there is no discrete segregation between scaffold layers. This review compares the methods and applications of recent stratified approaches to emerging continuously graded methods.


Gradient Stratified Interface Tissue engineering Osteochondral 



The authors would like to acknowledge funding from the Arthritis Foundation, the National Institutes of Health (NIH/NIDCR 1 R21 DE017673-01), and the Oral and Maxillofacial Surgery Foundation. The authors would also like to acknowledge the NIGMS/NIH Pharmaceutical Aspects of Biotechnology Training Grant (T32-GM008359) for supporting N. H. Dormer.


  1. 1.
    Alcaide, M., P. Portolés, A. López-Noriega, D. Arcos, M. Vallet-Regí, and M. T. Portolés. Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta Biomater. 6(3):892–899, 2010CrossRefPubMedGoogle Scholar
  2. 2.
    Asakawa, N., T. Shimizu, Y. Tsuda, S. Sekiya, T. Sasagawa, M. Yamato, F. Fukai, and T. Okano. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31:3903–3909, 2010.CrossRefPubMedGoogle Scholar
  3. 3.
    Bae, S., J. Son, K. Park, and D. Han. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J. Controlled Release 133:37–43, 2009.CrossRefGoogle Scholar
  4. 4.
    Bian, W., and N. Bursac. Tissue engineering of functional skeletal muscle: challenges and recent advances. IEEE Eng. Med. Biol. Mag. 27:109–113, 2008.CrossRefPubMedGoogle Scholar
  5. 5.
    Bretcanu, O., C. Samaille, and A. Boccaccini. Simple methods to fabricate Bioglass®-derived glass–ceramic scaffolds exhibiting porosity gradient. J. Mater. Sci. 43:4127–4134, 2008.CrossRefGoogle Scholar
  6. 6.
    Chan, G., and D. Mooney. New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol. 26:382–392, 2008.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, R., E. Silva, W. Yuen, and D. Mooney. Spatio–temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res. 24:258–264, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng, L., F. Ye, R. Yang, X. Lu, Y. Shi, L. Li, H. Fan, and H. Bu. Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 6(4):1569–1574, 2010.CrossRefPubMedGoogle Scholar
  9. 9.
    Chung, C., and J. Burdick. Engineering cartilage tissue. Adv. Drug Deliv. Rev. 60:243–262, 2007.CrossRefPubMedGoogle Scholar
  10. 10.
    Daugaard, H., B. Elmengaard, J. E. Bechtold, T. Jensen, and K. Soballe. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J. Biomed. Mater. Res. A, 2009 (published online ahead of print).Google Scholar
  11. 11.
    De Assis, A. F., M. M. Beloti, G. E. Crippa, P. T. De Oliveira, M. Morra, and A. L. Rosa. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface. Clin. Oral Implants Res. 20:240–246, 2009.CrossRefPubMedGoogle Scholar
  12. 12.
    Dormer, N., M. Singh, L. Wang, C. Berkland, and M. Detamore. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann. Biomed. Eng. - Special Issue on Interfacial Bioeng, 2010. doi: 10.1007/s10439-010-0028-0
  13. 13.
    Erisken, C., D. Kalyon, and H. Wang. Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065–4073, 2008.CrossRefPubMedGoogle Scholar
  14. 14.
    Gauvin, R., T. Ahsan, D. Larouche, P. Lévesque, J. Dubé, F. A. Auger, R. M. Nerem, and L. Germain. A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng. A, 2010 (online ahead of print).Google Scholar
  15. 15.
    Genzer, J., and R. Bhat. Surface-bound soft matter gradients. Langmuir 24:2294–2317, 2008.CrossRefPubMedGoogle Scholar
  16. 16.
    Grayson, W., P. Chao, D. Marolt, D. Kaplan, and G. Vunjak-Novakovic. Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol. 26:181–189, 2008.CrossRefPubMedGoogle Scholar
  17. 17.
    Grayson, W., T. Martens, G. Eng, M. Radisic, and G. Vunjak-Novakovic. Biomimetic approach to tissue engineering. Semin. Cell Dev. Biol. 20:665–673, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Hennessy, K. M., B. E. Pollot, W. C. Clem, M. C. Phipps, A. A. Sawyer, B. K. Culpepper, and S. L. Bellis. The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials 30:1898–1909, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Ho, S. T. B., D. W. Hutmacher, A. K. Ekaputra, D. Hitendra, and H. H. P. James. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng. A, 2009 (online ahead of print).Google Scholar
  20. 20.
    Hoganson, D. M., H. I. Pryor, I. D. Spool, O. H. Burns, J. R. Gilmore, and J. P. Vacanti. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold. Tissue Eng. A, 2010 (online ahead of print).Google Scholar
  21. 21.
    Hsu, Y., I. Turner, and A. Miles. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J. Mater. Sci.: Mater. Med. 18:2251–2256, 2007.CrossRefGoogle Scholar
  22. 22.
    Hutmacher, D. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543, 2000.CrossRefPubMedGoogle Scholar
  23. 23.
    Jo, J.-H., E.-J. Lee, D.-S. Shin, H.-E. Kim, H.-W. Kim, Y.-H. Koh, and J.-H. Jang. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials. J. Biomed. Mater. Res. B 91:213–220, 2009.Google Scholar
  24. 24.
    Ju, Y. M., J. S. Choi, A. Atala, J. J. Yoo, and S. J. Lee. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 31:4313–4321, 2010.CrossRefPubMedGoogle Scholar
  25. 25.
    Kang, S., W. La, and B. Kim. Open macroporous poly (lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. J. Biomater. Sci. Polym. Ed. 20:399–409, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Keeney, M., and A. Pandit. The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng. B: Rev. 15:55–73, 2009.CrossRefGoogle Scholar
  27. 27.
    Kim, S.-H., E. Chung, S.-H. Kim, Y. Jung, Y. H. Kim, and S. H. Kim. A novel seamless elastic scaffold for vascular tissue engineering. J. Biomater. Sci. Polym. Ed. 21:289–302, 2010.CrossRefPubMedGoogle Scholar
  28. 28.
    Klein, T., J. Malda, R. Sah, and D. Hutmacher. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. B: Rev. 15:143–157, 2009.CrossRefGoogle Scholar
  29. 29.
    Kodama, S., K. Kojima, S. Furuta, M. Chambers, A. C. Paz, and C. A. Vacanti. Engineering functional islets from cultured cells. Tissue Eng. A 15:3321–3329, 2009.CrossRefGoogle Scholar
  30. 30.
    Kokai, L. E., A. M. Ghaznavi, and K. G. Marra. Incorporation of double-walled microspheres into polymer nerve guides for the sustained delivery of glial cell line-derived neurotrophic factor. Biomaterials 31(8):2313–2322, 2010CrossRefPubMedGoogle Scholar
  31. 31.
    Kon, E., M. Delcogliano, G. Filardo, D. Pressato, M. Busacca, B. Grigolo, G. Desando, and M. Marcacci. A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury, 2010 (online ahead of print).Google Scholar
  32. 32.
    Lee, J., M. J. Cuddihy, and N. A. Kotov. Three-dimensional cell culture matrices: state of the art. Tissue Eng. 14:61–86, 2008.CrossRefGoogle Scholar
  33. 33.
    Lee, W., J. C. Debasitis, V. K. Lee, J.-H. Lee, K. Fischer, K. Edminster, J.-K. Park, and S.-S. Yoo. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee, S., J. Moon, and J. West. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29:2962–2968, 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    Leong, K., C. Chua, N. Sudarmadji, and W. Yeong. Engineering functionally graded tissue engineering scaffolds. J. Mech. Behav. Biomed. Mater. 1:140–152, 2008.CrossRefPubMedGoogle Scholar
  36. 36.
    Liu, C., Z. Han, and J. Czernuszka. Gradient collagen/nanohydroxyapatite composite scaffold: development and characterization. Acta Biomater. 5:661–669, 2009.CrossRefPubMedGoogle Scholar
  37. 37.
    Liu, L., Z. Xiong, Y. Yan, R. Zhang, X. Wang, and L. Jin. Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J. Biomed. Mater. Res. B 88:254–263, 2008.Google Scholar
  38. 38.
    Liu, L., Z. Xiong, R. Zhang, and L. Jin. A novel osteochondral scaffold fabricated via multi-nozzle low-temperature deposition manufacturing. J. Bioact. Compat. Polym. 24:18–30, 2009.CrossRefGoogle Scholar
  39. 39.
    Lu, H., and J. Jiang. Interface tissue engineering and the formulation of multiple-tissue systems. Adv. Biochem. Eng. Biotechnol. 102:91–111, 2006.PubMedGoogle Scholar
  40. 40.
    Lu, H., and J. Spalazzi. Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering. Comb. Chem. High Throughput Screen. 12:589–597, 2009.CrossRefPubMedGoogle Scholar
  41. 41.
    Martin, I., S. Miot, A. Barbero, M. Jakob, and D. Wendt. Osteochondral tissue engineering. J. Biomech. 40:750–765, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Mikos, A., S. Herring, P. Ochareon, J. Elisseeff, H. Lu, R. Kandel, F. Schoen, M. Toner, D. Mooney, and A. Atala. Engineering complex tissues. Tissue Eng. 12:3307–3339, 2006.CrossRefPubMedGoogle Scholar
  43. 43.
    Mimura, T., S. Imai, M. Kubo, E. Isoya, K. Ando, N. Okumura, and Y. Matsusue. A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair. Osteoarthritis Cartil. 16:1083–1091, 2008.CrossRefGoogle Scholar
  44. 44.
    Mizuno, M., R. Fujisawa, and Y. Kuboki. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J. Cell Physiol. 184:207–213, 2000.CrossRefPubMedGoogle Scholar
  45. 45.
    Moffat, K., I. Wang, S. Rodeo, and H. Lu. Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin. Sports Med. 28:157–176, 2009.CrossRefPubMedGoogle Scholar
  46. 46.
    Munoz-Pinto, D. J., R. E. McMahon, M. A. Kanzelberger, A. C. Jimenez-Vergara, M. A. Grunlan, and M. S. Hahn. Inorganic-organic hybrid scaffolds for osteochondral regeneration. J. Biomed. Mater. Res. A, 2010 (online ahead of print).Google Scholar
  47. 47.
    Murphy, C. M., M. G. Haugh, and F. J. O’Brien. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466, 2009.CrossRefPubMedGoogle Scholar
  48. 48.
    Narayan, R., L. Hobbs, C. Jin, and A. Rabiei. The use of functionally gradient materials in medicine. JOM J. Min. Met. Mater. Soc. 58:52–56, 2006.Google Scholar
  49. 49.
    O’Shea, T., and X. Miao. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng. B: Rev. 14:447–464, 2008.CrossRefGoogle Scholar
  50. 50.
    Phillips, J. E., K. L. Burns, J. M. Le Doux, R. E. Guldberg, and A. J. García. Engineering graded tissue interfaces. Proc. Natl Acad. Sci. 105:12170–12175, 2008.CrossRefPubMedGoogle Scholar
  51. 51.
    Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.CrossRefPubMedGoogle Scholar
  52. 52.
    Ripamonti, U., J. Crooks, L. Khoali, and L. Roden. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials 30:1428–1439, 2009.CrossRefPubMedGoogle Scholar
  53. 53.
    Ruozi, B., B. Parma, M. A. Croce, G. Tosi, L. Bondioli, S. Vismara, F. Forni, and M. A. Vandelli. Collagen-based modified membranes for tissue engineering: influence of type and molecular weight of GAGs on cell proliferation. Int. J. Pharm. 378:108–115, 2009.CrossRefPubMedGoogle Scholar
  54. 54.
    Sharma, B., and J. Elisseeff. Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 32:148–159, 2004.CrossRefPubMedGoogle Scholar
  55. 55.
    Shen, H., X. Hu, F. Yang, J. Bei, and S. Wang. An injectable scaffold: rhBMP-2-loaded poly (lactide-co-glycolide)/hydroxyapatite composite microspheres. Acta Biomater. 6:455–465, 2009.CrossRefPubMedGoogle Scholar
  56. 56.
    Singh, M., C. Berkland, and M. S. Detamore. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng. B: Rev. 14:341–366, 2008.CrossRefGoogle Scholar
  57. 57.
    Singh, M., N. Dormer, J. Salash, J. Christian, D. Moore, C. Berkland, and M. Detamore. Three-dimensional macroscopic scaffolds with a gradient in stiffness for functional regeneration of interfacial tissues. J. Biomed. Mater. Res. A, 2010 (online ahead of print).Google Scholar
  58. 58.
    Singh, M., C. Morris, R. Ellis, M. S. Detamore, and C. Berkland. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng. C: Methods 14:299–309, 2008.CrossRefGoogle Scholar
  59. 59.
    Spalazzi, J., E. Dagher, S. Doty, X. Guo, S. Rodeo, and H. Lu. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86A:1–12, 2008.CrossRefGoogle Scholar
  60. 60.
    Spalazzi, J., S. Doty, K. Moffat, W. Levine, and H. Lu. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 12:3497–3508, 2006.CrossRefPubMedGoogle Scholar
  61. 61.
    Tampieri, A., M. Sandri, E. Landi, D. Pressato, S. Francioli, R. Quarto, and I. Martin. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29:3539–3546, 2008.CrossRefPubMedGoogle Scholar
  62. 62.
    Teng, S., E. Lee, P. Wang, S. Jun, C. Han, and H. Kim. Functionally gradient chitosan/hydroxyapatite composite scaffolds for controlled drug release. J. Biomed. Mater. Res. B 90B:275–282, 2008.CrossRefGoogle Scholar
  63. 63.
    Thomas, V., X. Zhang, S. Catledge, and Y. Vohra. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed. Mater. 2:224, 2007.CrossRefPubMedGoogle Scholar
  64. 64.
    Tsigkou, O., J. R. Jones, J. M. Polak, and M. M. Stevens. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials 30:3542–3550, 2009.CrossRefPubMedGoogle Scholar
  65. 65.
    Vargas, G. E., R. V. Mesones, O. Bretcanu, J. M. P. López, A. R. Boccaccini, and A. Gorustovich. Biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds in chick embryos. Acta Biomater. 5:374–380, 2009.CrossRefPubMedGoogle Scholar
  66. 66.
    Vitale-Brovarone, C., F. Baino, and E. Verne. Feasibility and tailoring of bioactive glass-ceramic scaffolds with gradient of porosity for bone grafting. J. Biomater. Appl., 2009 (published online ahead of print).Google Scholar
  67. 67.
    Wahl, D., E. Sachlos, C. Liu, and J. Czernuszka. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci.: Mater. Med. 18:201–209, 2007.CrossRefGoogle Scholar
  68. 68.
    Wang, I., J. Shan, R. Choi, S. Oh, C. Kepler, F. Chen, and H. Lu. Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res. 25:1609–1620, 2007.CrossRefPubMedGoogle Scholar
  69. 69.
    Wang, X., E. Wenk, X. Zhang, L. Meinel, G. Vunjak-Novakovic, and D. Kaplan. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Controlled Release 134:81–90, 2009.CrossRefGoogle Scholar
  70. 70.
    Yang, P., and J. Temenoff. Engineering orthopedic tissue interfaces. Tissue Eng. B: Rev. 15:127–141, 2009.CrossRefGoogle Scholar
  71. 71.
    Zhang, X., V. Thomas, and Y. Vohra. In vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers. J. Biomed. Mater. Res. B 89B:135–147, 2009.CrossRefGoogle Scholar
  72. 72.
    Zheng, W. A water-in-oil-in-oil-in-water (W/O/O/W) method for producing drug-releasing, double-walled microspheres. Int. J. Pharm. 374:90–95, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Nathan H. Dormer
    • 1
  • Cory J. Berkland
    • 2
    • 3
  • Michael S. Detamore
    • 2
    Email author
  1. 1.Bioengineering ProgramUniversity of KansasLawrenceUSA
  2. 2.Department of Chemical and Petroleum EngineeringUniversity of KansasLawrenceUSA
  3. 3.Pharmaceutical ChemistryUniversity of KansasLawrenceUSA

Personalised recommendations