Annals of Biomedical Engineering

, Volume 38, Issue 9, pp 2791–2804 | Cite as

Neutrophil Adhesion on Endothelial Cells in a Novel Asymmetric Stenosis Model: Effect of Wall Shear Stress Gradients

  • Leonie Rouleau
  • Ian B. Copland
  • Jean-Claude Tardif
  • Rosaire Mongrain
  • Richard L. Leask


Leukocytes play a pivotal role in the progression of atherosclerosis. A novel three-dimensional in vitro asymmetric stenosis model was used to better investigate the role of local hemodynamics in the adhesion of leukocytes to an established plaque. The adhesion of a human promyelocytic cell line (NB4) on a human abdominal aortic endothelial cell (EC) monolayer was quantified. NB4 cells were circulated over TNF-α stimulated and nonstimulated ECs for 1 or 6 h at 1.25 or 6.25 dynes/cm2 and compared to static conditions. Cytokine stimulation increased significantly EC expression of intercellular adhesion molecule and vascular cell adhesion molecule. Under static conditions, neutrophils adhered overall more than under flow, with decreased adhesion with increasing shear. Adhesion was significantly higher in the recirculation region distal to the stenosis than in the inlet. Preshearing the ECs decreased the expression of cell adhesion molecules in inflamed endothelium and significantly decreased adhesion. However, the ratio of adhesion between the recirculation zone and the inlet increased, hence exhibiting an increased regional difference. This work suggests an important role for neutrophil–EC interactions in the atherosclerotic process, especially in wall shear stress gradient regions. This is important clinically, potentially helping to explain plaque stability.


In vitro perfusion Wall shear stress Coronary plaque Inflammation Vulnerability Stability 



We thank L. Danielczak and K. Markey for their technical assistance in the experiments.


This work was supported by grants from the Canadian Foundation for Innovation (CFI), the National Sciences and Engineering Research Council (NSERC), the Canadian Institutes of Health Research (CIHR), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the Eugenie Ulmer Lamothe Fund (EUL).

Supplementary material

10439_2010_32_MOESM1_ESM.avi (8.8 mb)
Supplementary material 1 (AVI 9008 kb)
10439_2010_32_MOESM2_ESM.avi (8.8 mb)
Supplementary material 2 (AVI 9008 kb)


  1. 1.
    Ando, J., H. Nomura, and A. Kamiya. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc. Res. 33(1):62–70, 1987.CrossRefPubMedGoogle Scholar
  2. 2.
    Brunette, J., R. Mongrain, G. Cloutier, M. Bertrand, O. F. Bertrand, and J. C. Tardif. A novel realistic three-layer phantom for intravascular ultrasound imaging. Int. J. Cardiovasc. Imaging 17(5):371–381, 2001.CrossRefPubMedGoogle Scholar
  3. 3.
    Brunette, J., R. Mongrain, J. Laurier, R. Galaz, and J. C. Tardif. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method. Med. Eng. Phys. 30(9):1193–1200, 2008.CrossRefPubMedGoogle Scholar
  4. 4.
    Burke, A. P., F. D. Kolodgie, A. Farb, D. Weber, and R. Virmani. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105(3):297–303, 2002.CrossRefPubMedGoogle Scholar
  5. 5.
    Burns, M. P., and N. DePaola. Flow-conditioned HUVECs support clustered leukocyte adhesion by coexpressing ICAM-1 and E-selectin. Am. J. Physiol. Heart Circ. Physiol. 288(1):H194–H204, 2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen, C. N., S. F. Chang, P. L. Lee, K. Chang, L. J. Chen, S. Usami, S. Chien, and J. J. Chiu. Neutrophils, lymphocytes, and monocytes exhibit diverse behaviors in transendothelial and subendothelial migrations under coculture with smooth muscle cells in disturbed flow. Blood 107(5):1933–1942, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, C. C., and A. M. Manning. Transcriptional regulation of endothelial cell adhesion molecules: a dominant role for NF-kappa B. Agents Actions Suppl. 47:135–141, 1995.PubMedGoogle Scholar
  8. 8.
    Chung, T. W., Y. C. Tyan, J. H. Hsieh, S. S. Wang, and S. H. Chu. Shear stress-induced aggregation of oxidized platelets. Thromb. Res. 105(4):325–329, 2002.CrossRefPubMedGoogle Scholar
  9. 9.
    Cicha, I., K. Beronov, E. Lopez Ramirez, K. Osterode, M. Goppelt, D. Raaz, A. Yilmaz, W. G. Daniel, and C. D. Garlichs. Shear stress preconditioning modulates endothelial susceptibility to circulating TNF-α ± and monocytic cell recruitment in a simplified model of arterial bifurcations. Atherosclerosis 207(1):93–102, 2009.CrossRefPubMedGoogle Scholar
  10. 10.
    Cicha, I., M. Goppelt-Struebe, A. Yilmaz, W. G. Daniel, and C. D. Garlichs. Endothelial dysfunction and monocyte recruitment in cells exposed to non-uniform shear stress. Clin. Hemorheol. Microcirc. 39(1-4):113–119, 2008.PubMedGoogle Scholar
  11. 11.
    Couch, G. G., K. W. Johnston, and M. Ojha. Full-field flow visualization and velocity measurement with a photochromic grid method. Meas. Sci. Technol. 7:1238–1246, 1996.CrossRefGoogle Scholar
  12. 12.
    Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. USA 101(41):14871–14876, 2004.CrossRefPubMedGoogle Scholar
  13. 13.
    DeBakey, M. E., G. M. Lawrie, and D. H. Glaeser. Patterns of atherosclerosis and their surgical significance. Ann. Surg. 201(2):115–131, 1985.CrossRefPubMedGoogle Scholar
  14. 14.
    Dirksen, M. T., A. C. van der Wal, F. M. van den Berg, C. M. van der Loos, and A. E. Becker. Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow. Circulation 98(19):2000–2003, 1998.PubMedGoogle Scholar
  15. 15.
    Falanga, A., M. Marchetti, S. Giovanelli, and T. Barbui. All-trans-retinoic acid counteracts endothelial cell procoagulant activity induced by a human promyelocytic leukemia-derived cell line (NB4). Blood 87(2):613–617, 1996.PubMedGoogle Scholar
  16. 16.
    Falk, E., P. K. Shah, and V. Fuster. Coronary plaque disruption. Circulation 92(3):657–671, 1995.PubMedGoogle Scholar
  17. 17.
    Farcas, M., L. Rouleau, R. Fraser, and R. Leask. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease. Biomed. Eng. 8(1):30, 2009.Google Scholar
  18. 18.
    Feng, S., X. Lu, J. C. Resendiz, and M. H. Kroll. Pathological shear stress directly regulates platelet alphaIIbbeta3 signaling. Am. J. Physiol. Cell Physiol. 291(6):C1346–C1354, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    Finger, E. B., K. D. Puri, R. Alon, M. B. Lawrence, U. H. von Andrian, and T. A. Springer. Adhesion through l-selectin requires a threshold hydrodynamic shear. Nature 379(6562):266–269, 1996.CrossRefPubMedGoogle Scholar
  20. 20.
    Garcia-Cardena, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone, Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl Acad. Sci. USA 98(8):4478–4485, 2001.CrossRefPubMedGoogle Scholar
  21. 21.
    Gimbrone, Jr., M. A., T. Nagel, and J. N. Topper. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J. Clin. Invest. 100(11 Suppl):S61–S65, 1997.PubMedGoogle Scholar
  22. 22.
    Gimbrone, Jr., M. A., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. NY Acad. Sci. 902:230–239, 2000.CrossRefPubMedGoogle Scholar
  23. 23.
    Gopalan, P. K., A. R. Burns, S. I. Simon, S. Sparks, L. V. McIntire, and C. W. Smith. Preferential sites for stationary adhesion of neutrophils to cytokine-stimulated HUVEC under flow conditions. J. Leukoc. Biol. 68(1):47–57, 2000.PubMedGoogle Scholar
  24. 24.
    Hinds, M. T., Y. J. Park, S. A. Jones, D. P. Giddens, and B. R. Alevriadou. Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with E-selectin. J. Biomech. 34(1):95–103, 2001.CrossRefPubMedGoogle Scholar
  25. 25.
    Khanna-Gupta, A., K. Kolibaba, T. A. Zibello, and N. Berliner. NB4 cells show bilineage potential and an aberrant pattern of neutrophil secondary granule protein gene expression. Blood 84(1):294–302, 1994.PubMedGoogle Scholar
  26. 26.
    Koller, A., D. Sun, and G. Kaley. Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ. Res. 72(6):1276–1284, 1993.PubMedGoogle Scholar
  27. 27.
    Kovanen, P. T. Mast cells and degradation of pericellular and extracellular matrices: potential contributions to erosion, rupture and intraplaque haemorrhage of atherosclerotic plaques. Biochem. Soc. Trans. 035(5):857–861, 2007.CrossRefGoogle Scholar
  28. 28.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and arherosclerosis in human carotid bifurcation: Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302, 1985.PubMedGoogle Scholar
  29. 29.
    Leask, R. L., J. K. Wayne, and M. Ojha. Hemodynamic effects of clot entrapment in the TrapEase inferior vena cava filter. J. Vasc. Interv. Radiol. 15(5):485–490, 2004.PubMedGoogle Scholar
  30. 30.
    Libby, P. Inflammation in atherosclerosis. Nature 420(6917):868–874, 2002.CrossRefPubMedGoogle Scholar
  31. 31.
    Libby, P., P. M. Ridker, and A. Maseri. Inflammation and atherosclerosis. Circulation 105(9):1135–1143, 2002.CrossRefPubMedGoogle Scholar
  32. 32.
    Libby, P., and P. Theroux. Pathophysiology of coronary artery disease. Circulation 111(25):3481–3488, 2005.CrossRefPubMedGoogle Scholar
  33. 33.
    Lindstedt, K. A., M. J. Leskinen, and P. T. Kovanen. Proteolysis of the pericellular matrix: a novel element determining cell survival and death in the pathogenesis of plaque erosion and rupture. Arterioscler. Thromb. Vasc. Biol. 24(8):1350–1358, 2004.CrossRefPubMedGoogle Scholar
  34. 34.
    Marchetti, A. F. All-trans-retinoic acid increases adhesion to endothelium of the human promyelocytic leukaemia cell line NB4. Brit. J. Haematol. 93(2):360–366, 1996.CrossRefGoogle Scholar
  35. 35.
    Marchetti, M., A. Falanga, S. Giovanelli, E. Oldani, and T. Barbui. All-trans-retinoic acid increases adhesion to endothelium of the human promyelocytic leukaemia cell line NB4. Br. J. Haematol. 93(2):360–366, 1996.CrossRefPubMedGoogle Scholar
  36. 36.
    Montoya, M. C., F. W. Luscinskas, M. A. del Pozo, J. Aragones, and M. O. de Landazuri. Reduced intracellular oxidative metabolism promotes firm adhesion of human polymorphonuclear leukocytes to vascular endothelium under flow conditions. Eur. J. Immunol. 27(8):1942–1951, 1997.CrossRefPubMedGoogle Scholar
  37. 37.
    Nerem, R. M., R. W. Alexander, D. C. Chappell, R. M. Medford, S. E. Varner, and W. R. Taylor. The study of the influence of flow on vascular endothelial biology. Am. J. Med. Sci. 316(3):169–175, 1998.CrossRefPubMedGoogle Scholar
  38. 38.
    Ojha, M., R. S. Cobbold, and K. W. Johnston. Influence of angle on wall shear stress distribution for an end-to-side anastomosis. J. Vasc. Surg. 19(6):1067–1073, 1994.PubMedGoogle Scholar
  39. 39.
    Ojha, M., R. S. C. Cobbold, K. W. Johnston, and R. L. Hummel. Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods. J. Fluid Mech. 203(1):173–197, 1989.CrossRefGoogle Scholar
  40. 40.
    Ojha, M., R. S. Cobbold, K. W. Johnston, and R. L. Hummel. Detailed visualization of pulsatile flow fields produced by modelled arterial stenoses. J. Biomed. Eng. 12(6):463–469, 1990.CrossRefPubMedGoogle Scholar
  41. 41.
    Price, D. T., and J. Loscalzo. Cellular adhesion molecules and atherogenesis. Am. J. Med. 107(1):85–97, 1999.CrossRefPubMedGoogle Scholar
  42. 42.
    Rainger, G. E., A. C. Fisher, and G. B. Nash. Endothelial-borne platelet-activating factor and interleukin-8 rapidly immobilize rolling neutrophils. Am. J. Physiol. 272(1 Pt 2):H114–H122, 1997.PubMedGoogle Scholar
  43. 43.
    Richardson, P. D., M. J. Davies, and G. V. R. Born. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 334(8669):941–944, 1989.CrossRefGoogle Scholar
  44. 44.
    Rouleau, L., M. Farcas, I. Copland, J. C. Tardif, R. Mongrain, and R. L. Leask. Morphological and functional flow-induced response of endothelial cells and adhesive properties of leukocytes in 3D stenotic models. IFMBE Proc. 22(15):2015–2018, 2009.CrossRefGoogle Scholar
  45. 45.
    Rouleau, L., M. Farcas, J. C. Tardif, E. Thorin, R. Mongrain, and R. L. Leask. Endothelial cell morphology and response to shear stress in an asymmetric stenosis model. J. Biomech. 39(S1):S312, 2006.CrossRefGoogle Scholar
  46. 46.
    Rouleau, L., J. Rossi, and R. L. Leask. The response of human aortic endothelial cells in a stenotic hemodynamic environment: effect of duration, magnitude and spatial gradients in wall shear stress. J. Biomech. Eng., in press. doi: 10.1115/1.4001217
  47. 47.
    Sheikh, S., M. Rahman, Z. Gale, N. T. Luu, P. C. Stone, N. M. Matharu, G. E. Rainger, and G. B. Nash. Differing mechanisms of leukocyte recruitment and sensitivity to conditioning by shear stress for endothelial cells treated with tumour necrosis factor-alpha or interleukin-1beta. Br. J. Pharmacol. 145(8):1052–1061, 2005.CrossRefPubMedGoogle Scholar
  48. 48.
    Simon, S. I., and H. L. Goldsmith. Leukocyte adhesion dynamics in shear flow. Ann. Biomed. Eng. 30(3):315–332, 2002.CrossRefPubMedGoogle Scholar
  49. 49.
    Stary, H. C., A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov, W. Insull, Jr., M. E. Rosenfeld, C. J. Schwartz, W. D. Wagner, and R. W. Wissler. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92(5):1355–1374, 1995.PubMedGoogle Scholar
  50. 50.
    Theilmeier, G., T. Lenaerts, C. Remacle, D. Collen, J. Vermylen, and M. F. Hoylaerts. Circulating activated platelets assist THP-1 monocytoid/endothelial cell interaction under shear stress. Blood 94(8):2725–2734, 1999.PubMedGoogle Scholar
  51. 51.
    Tsou, J. K., R. M. Gower, H. J. Ting, U. Y. Schaff, M. F. Insana, A. G. Passerini, and S. I. Simon. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 15(4):311–323, 2008.CrossRefPubMedGoogle Scholar
  52. 52.
    Viles-Gonzalez, J. F., V. Fuster, and J. J. Badimon. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur. Heart J. 25(14):1197–1207, 2004.CrossRefPubMedGoogle Scholar
  53. 53.
    Virmani, R., and P. B. U. Allen. Pathology of the thin-cap fibroatheroma. J. Intervent. Cardiol. 16(3):267–272, 2003.CrossRefPubMedGoogle Scholar
  54. 54.
    Walpola, P. L., A. I. Gotlieb, M. I. Cybulsky, and B. L. Langille. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler. Thromb. Vasc. Biol. 15(1):2–10, 1995.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Leonie Rouleau
    • 1
    • 2
  • Ian B. Copland
    • 3
  • Jean-Claude Tardif
    • 2
  • Rosaire Mongrain
    • 2
    • 4
  • Richard L. Leask
    • 1
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Montreal Heart InstituteMontrealCanada
  3. 3.Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealCanada
  4. 4.Department of Mechanical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations