Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 8, pp 2532–2541 | Cite as

A Multilead Scheme Based on Periodic Component Analysis for T-Wave Alternans Analysis in the ECG

  • Violeta Monasterio
  • Gari D. Clifford
  • Pablo Laguna
  • Juan Pablo Martínez
Article

Abstract

T-wave alternans (TWA) is a cardiac phenomenon that appears in the electrocardiogram (ECG) and is associated with the mechanisms leading to sudden cardiac death (SCD). In this study, we propose the use of a multilead TWA analysis scheme that combines the Laplacian likelihood ratio (LLR) method and periodic component analysis (πCA), an eigenvalue decomposition technique whose aim is to extract the most periodic sources of the signal. The proposed scheme is evaluated in different scenarios—from synthetic signals to stress test ECGs—and is compared to other reported schemes based on the LLR method. Results demonstrate that the πCA-based scheme provides a superior ability to detect TWA than previously reported schemes, and has the potential to improve the prognostic value of testing for TWA.

Keywords

Electrocardiogram T-wave alternans Multilead analysis Periodic component analysis 

Notes

Acknowledgments

This work was supported by CIBER de Bioingeniería, Biomateriales y Nanomedicina through Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional, by Project TEC-2007-68076-C02-02 from CICYT, and by Grupo Consolidado GTC from DGA (Spain).

References

  1. 1.
    Bailón, R., J. Mateo, S. Olmos, P. Serrano, J. García, A. del Río, I. J. Ferreira, and P. Laguna. Coronary artery disease diagnosis based on exercise electrocardiogram indexes from repolarisation, depolarisation and heart rate variability. Med. Biol. Eng. Comput. 41(5):561–571, 2003CrossRefPubMedGoogle Scholar
  2. 2.
    Bloomfield, D. M., S. H. Hohnloser, and R. J. Cohen. Interpretation and classification of microvolt T wave alternans tests. J. Cardiovasc. Electrophysiol. 13(5):502–512, 2002CrossRefPubMedGoogle Scholar
  3. 3.
    Chow, T., D. J. Kereiakes, C. Bartone, T. Booth, E. J. Schloss, T. Waller, E. S. Chung, S. Menon, B. K. Nallamothu, and P. S. Chan. Prognostic utility of microvolt T-wave alternans in risk stratification of patients with ischemic cardiomyopathy. J. Am. Coll. Cardiol. 47(9):1820–1827, 2006CrossRefPubMedGoogle Scholar
  4. 4.
    Clifford, G. D., F. Azuaje, and P. McSharry. Advanced Methods and Tools for ECG Data Analysis. Norwood, MA: Artech House, Inc., 2006Google Scholar
  5. 5.
    Clifford, G. D., S. Nemati, and R. Sameni. An artificial multi-channel model for generating abnormal electrocardiographic rhythms. Physiol. Meas. 31(5):595–609, 2010CrossRefPubMedGoogle Scholar
  6. 6.
    Costantini, O., S. H. Hohnloser, M. M. Kirk, B. B. Lerman, J. H. Baker, B. Sethuraman, M. M. Dettmer, and D. S. Rosenbaum; ABCD Trial Investigators. The ABCD (Alternans Before Cardioverter Defibrillator) trial: Strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J. Am. Coll. Cardiol. 53(6):471–479, 2009Google Scholar
  7. 7.
    Cutler, M. J., and D. S. Rosenbaum. Explaining the clinical manifestations of T wave alternans in patients at risk for sudden cardiac death. Heart Rhythm 6(3 Suppl 1):S22–S28, 2009CrossRefPubMedGoogle Scholar
  8. 8.
    de Vilhena Garcia, E., N. Samesima, H. G. P. Filho, C. M. Quadros, L. T. C. da Silva, M. M. Filho, M. L. Z. Hannouche, W. Mathias, and C. A. Pastore. Comparison of quantitative T-wave alternans profiles of healthy subjects and ICD patients. Ann. Noninvasive Electrocardiol. 14(2):108–118, 2009CrossRefPubMedGoogle Scholar
  9. 9.
    Klingenheben, T., P. Ptaszynski, and S. H. Hohnloser. Quantitative assessment of microvolt T-wave alternans in patients with congestive heart failure. J. Cardiovasc. Electrophysiol. 16(6):620–624, 2005CrossRefPubMedGoogle Scholar
  10. 10.
    Martínez, J. P., R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna. A wavelet-based ECG delineator: Evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4):570–581, 2004CrossRefPubMedGoogle Scholar
  11. 11.
    Martínez, J. P., and S. Olmos. Detection of T wave alternans in nonstationary noise: A GLRT approach. In: 30th Ann. Conf. Computers in Cardiology. Piscataway, NJ: IEEE Comp. Soc. Press, 2003, pp. 161–164CrossRefGoogle Scholar
  12. 12.
    Martínez, J. P., and S. Olmos. Methodological principles of T wave alternans analysis: A unified framework. IEEE Trans. Biomed. Eng. 52:599–613, 2005CrossRefPubMedGoogle Scholar
  13. 13.
    Martínez, J. P., S. Olmos, G. Wagner, and P. Laguna. Characterization of repolarization alternans during ischemia: Time-course and spatial analysis. IEEE Trans. Biomed. Eng. 53:701–711, 2006CrossRefPubMedGoogle Scholar
  14. 14.
    Meyer, C. R., and H. N. Keiser. Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput. Biomed. Res. 10(5):459–470, 1977CrossRefPubMedGoogle Scholar
  15. 15.
    Minkkinen, M., M. Kähönen, J. Viik, K. Nikus, T. Lehtimäki, R. Lehtinen, T. Kööbi, V. Turjanmaa, W. Kaiser, R. L. Verrier, and T. Nieminen. Enhanced predictive power of quantitative TWA during routine exercise testing in the Finnish cardiovascular study. J. Cardiovasc. Electrophysiol. 20(4):408–415, 2009CrossRefPubMedGoogle Scholar
  16. 16.
    Monasterio, V., P. Laguna, and J. P. Martínez. Multilead analysis of T-wave alternans in the ECG using principal component analysis. IEEE Trans. Biomed. Eng. 57(7):1880–1890, 2009CrossRefGoogle Scholar
  17. 17.
    Moody, G. B. The Physionet/Computers in Cardiology Challenge 2008: T-wave alternans. In: Proc. Computers in Cardiology, pp. 505–508, 2008Google Scholar
  18. 18.
    Moody, G. B., W. Muldrow, and R. G. Mark. A noise stress test for arrhythmia detectors. In: Computers in Cardiology, vol. 11. Piscataway, NJ: IEEE Comp. Soc. Press, 1984, pp. 381–384Google Scholar
  19. 19.
    Narayan, S. M. T-wave alternans and the susceptibility to ventricular arrhythmias. J. Am. Coll. Cardiol. 47(2):269–281, 2006CrossRefPubMedGoogle Scholar
  20. 20.
    Nearing, B. D., A. H. Huang, and R. L. Verrier. Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252(5004):437–440, 1991CrossRefPubMedGoogle Scholar
  21. 21.
    Nearing, B. D., P. H. Stone, and R. L. Verrier. Frequency response characteristics required for detection of T-wave alternans during ambulatory ECG monitoring. Ann. Noninvasive Electrocardiol. 1:103–112, 1996CrossRefGoogle Scholar
  22. 22.
    Nearing, B. D., and R. L. Verrier. Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with great accuracy. J. Appl. Physiol. 92(2):541–549, 2002PubMedGoogle Scholar
  23. 23.
    Rosenbaum, D. S., L. E. Jackson, J. M. Smith, H. Garan, J. N. Ruskin, and R. J. Cohen. Electrical alternans and vulnerability to ventricular arrhythmias. N. Engl. J. Med. 330(4):235–241, 1994CrossRefPubMedGoogle Scholar
  24. 24.
    Sameni, R., C. Jutten, and M. B. Shamsollahi. Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8):1935–1940, 2008CrossRefPubMedGoogle Scholar
  25. 25.
    Saul, L. K., and J. B. Allen. Periodic component analysis: An eigenvalue method for representing periodic structure in speech. In: Advances in Neural Information Processing System. Cambridge, MA: MIT Press, 2000, pp. 807–813Google Scholar
  26. 26.
    Smith, J. M., E. A. Clancy, C. R. Valeri, J. N. Ruskin, and R. J. Cohen. Electrical alternans and cardiac electrical instability. Circulation 77(1):110–121, 1988PubMedGoogle Scholar
  27. 27.
    Turitto, G., E. B. Caref, G. El-Attar, M. Helal, A. Mohamed, R. P. Pedalino,and N. El-Sherif. Optimal target heart rate for exercise-induced T-wave alternans. Ann. Noninvasive Electrocardiol. 6(2):123–128, 2001CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Violeta Monasterio
    • 1
    • 2
  • Gari D. Clifford
    • 3
  • Pablo Laguna
    • 1
    • 2
  • Juan Pablo Martínez
    • 1
    • 2
  1. 1.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)ZaragozaSpain
  2. 2.Communications Technology Group, Aragon Institute of Engineering ResearchUniversidad de ZaragozaZaragozaSpain
  3. 3.Department of Engineering Science, Institute of Biomedical EngineeringUniversity of OxfordOxfordUK

Personalised recommendations