Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 6, pp 2167–2182 | Cite as

Osteochondral Interface Tissue Engineering Using Macroscopic Gradients of Bioactive Signals

  • Nathan H. Dormer
  • Milind Singh
  • Limin Wang
  • Cory J. Berkland
  • Michael S. DetamoreEmail author
Article

Abstract

Continuous gradients exist at osteochondral interfaces, which may be engineered by applying spatially patterned gradients of biological cues. In the present study, a protein-loaded microsphere-based scaffold fabrication strategy was applied to achieve spatially and temporally controlled delivery of bioactive signals in three-dimensional (3D) tissue engineering scaffolds. Bone morphogenetic protein-2 and transforming growth factor-β1-loaded poly(d,l-lactic-co-glycolic acid) microspheres were utilized with a gradient scaffold fabrication technology to produce microsphere-based scaffolds containing opposing gradients of these signals. Constructs were then seeded with human bone marrow stromal cells (hBMSCs) or human umbilical cord mesenchymal stromal cells (hUCMSCs), and osteochondral tissue regeneration was assessed in gradient scaffolds and compared to multiple control groups. Following a 6-week cell culture, the gradient scaffolds produced regionalized extracellular matrix, and outperformed the blank control scaffolds in cell number, glycosaminoglycan production, collagen content, alkaline phosphatase activity, and in some instances, gene expression of major osteogenic and chondrogenic markers. These results suggest that engineered signal gradients may be beneficial for osteochondral tissue engineering.

Keywords

Osteochondral Interface Gradient Microsphere Umbilical cord stem cells PLGA BMP-2 TGF-β1 

Notes

Acknowledgments

The authors would like to express their gratitude to the Arthritis Foundation, the National Institutes of Health (NIH/NIDCR 1 R21 DE017673-01) for their support, to NIGMS/NIH Pharmaceutical Aspects of Biotechnology Training grant (T32-GM008359) for supporting N. H. Dormer, and to Dr. Xinkun Wang of the K.U. Genomics Facility for his guidance in RT–PCR.

Supplementary material

10439_2010_28_MOESM1_ESM.docx (160 kb)
Supplementary material 1 (DOCX 159 kb)
10439_2010_28_MOESM2_ESM.docx (64 kb)
Supplementary material 2 (DOCX 63 kb)
10439_2010_28_MOESM3_ESM.docx (261 kb)
Supplementary material 3 (DOCX 329 kb)
10439_2010_28_MOESM4_ESM.docx (224 kb)
Supplementary material 4 (DOCX 223 kb)

References

  1. 1.
    An, Y., and K. Martin. Handbook of Histology Methods for Bone and Cartilage. Humana Press, 2003.Google Scholar
  2. 2.
    Baksh, D., R. Yao, and R. S. Tuan. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392, 2007.CrossRefPubMedGoogle Scholar
  3. 3.
    Batycky, R., J. Hanes, R. Langer, and D. Edwards. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J. Pharm. Sci. 86:1464–1477, 1997.CrossRefPubMedGoogle Scholar
  4. 4.
    Berkland, C., K. Kim, and D. W. Pack. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Controlled Rel. 73:59–74, 2001.CrossRefGoogle Scholar
  5. 5.
    Berkland, C., K. Kim, and D. W. Pack. PLG microsphere size controls drug release rate through several competing factors. Pharm. Res. 20:1055–1062, 2003.CrossRefPubMedGoogle Scholar
  6. 6.
    Bianco, P., L. Fisher, M. Young, J. Termine, and P. Robey. Expression of bone sialoprotein (BSP) in developing human tissues. Calcif. Tissue Int. 49:421–426, 1991.CrossRefPubMedGoogle Scholar
  7. 7.
    Botchwey, E. A., S. R. Pollack, S. El-Amin, E. M. Levine, R. S. Tuan, and C. T. Laurencin. Human osteoblast-like cells in three-dimensional culture with fluid flow. Biorheology 40:299–306, 2003.PubMedGoogle Scholar
  8. 8.
    Botchwey, E. A., S. R. Pollack, E. M. Levine, and C. T. Laurencin. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J. Biomed. Mater. Res. 55:242–253, 2001.CrossRefPubMedGoogle Scholar
  9. 9.
    Boyan, B. D., Z. Schwartz, L. F. Bonewald, and L. D. Swain. Localization of 1,25-(OH)2D3-responsive alkaline phosphatase in osteoblast-like cells (ROS 17/2.8, MG 63, and MC 3T3) and growth cartilage cells in culture. J. Biol. Chem. 264:11879–11886, 1989.PubMedGoogle Scholar
  10. 10.
    Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115:453–466, 1962.CrossRefPubMedGoogle Scholar
  11. 11.
    Cao, X., and M. S. Shoichet. Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth. Neuroscience 122:381–389, 2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Choi, S., J. Kim, E. Kang, S. Lee, M. Park, Y. Park, and S. Lee. Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology 47:1775–1779, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Ciavarella, S., F. Dammacco, M. De Matteo, G. Loverro, and F. Silvestris. Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts. Stem Cells Dev. 18:1211–1220, 2009.CrossRefPubMedGoogle Scholar
  14. 14.
    Dickhut, A., V. Dexheimer, K. Martin, R. Lauinger, C. Heisel, and W. Richter. Chondrogenesis of human mesenchymal stem cells by local TGF-beta delivery in a biphasic resorbable carrier. Tissue Eng. A 16(2):453–464, 2010.CrossRefGoogle Scholar
  15. 15.
    Dodla, M. C., and R. V. Bellamkonda. Anisotropic scaffolds facilitate enhanced neurite extension in vitro. J. Biomed. Mater. Res. A 78:213–221, 2006.PubMedGoogle Scholar
  16. 16.
    Edwards, C., and W. O’Brien, Jr. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin. Chim. Acta 104:161–167, 1980.CrossRefPubMedGoogle Scholar
  17. 17.
    Eufinger, H., C. Rasche, J. Lehmbrock, M. Wehmoller, S. Weihe, I. Schmitz, C. Schiller, and M. Epple. Performance of functionally graded implants of polylactides and calcium phosphate/calcium carbonate in an ovine model for computer assisted craniectomy and cranioplasty. Biomaterials 28:475–485, 2007.CrossRefPubMedGoogle Scholar
  18. 18.
    Gerstenfeld, L. C., J. Cruceta, C. M. Shea, K. Sampath, G. L. Barnes, and T. A. Einhorn. Chondrocytes provide morphogenic signals that selectively induce osteogenic differentiation of mesenchymal stem cells. J. Bone Miner. Res. 17:221–230, 2002.CrossRefPubMedGoogle Scholar
  19. 19.
    Gordeladze, J., F. Djouad, J. Brondello, D. Noël, I. Duroux-Richard, F. Apparailly, and C. Jorgensen. Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacol. Sin. 30:1369–1384, 2009.CrossRefPubMedGoogle Scholar
  20. 20.
    Guo, X., H. Park, G. Liu, W. Liu, Y. Cao, Y. Tabata, F. K. Kasper, and A. G. Mikos. In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials 30:2741–2752, 2009.CrossRefPubMedGoogle Scholar
  21. 21.
    Heng, B. C., T. Cao, and E. H. Lee. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22:1152–1167, 2004.CrossRefPubMedGoogle Scholar
  22. 22.
    Hersel, U., C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415, 2003.CrossRefPubMedGoogle Scholar
  23. 23.
    Holland, T. A., E. W. Bodde, L. S. Baggett, Y. Tabata, A. G. Mikos, and J. A. Jansen. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J. Biomed. Mater. Res. A 75:156–167, 2005.PubMedGoogle Scholar
  24. 24.
    Holland, T. A., E. W. Bodde, V. M. Cuijpers, L. S. Baggett, Y. Tabata, A. G. Mikos, and J. A. Jansen. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthr. Cartil. 15:187–197, 2007.CrossRefPubMedGoogle Scholar
  25. 25.
    Hou, T., J. Xu, X. Wu, Z. Xie, F. Luo, Z. Zhang, and L. Zeng. Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng. A 15:2325–2334, 2009.CrossRefGoogle Scholar
  26. 26.
    Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64:295–312, 1997.CrossRefPubMedGoogle Scholar
  27. 27.
    Kapur, T. A., and M. S. Shoichet. Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J. Biomed. Mater. Res. 68:235–243, 2004.CrossRefGoogle Scholar
  28. 28.
    Karahuseyinoglu, S., O. Cinar, E. Kilic, F. Kara, G. G. Akay, D. O. Demiralp, A. Tukun, D. Uckan, and A. Can. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25:319–331, 2007.CrossRefPubMedGoogle Scholar
  29. 29.
    Knapp, D. M., E. F. Helou, and R. T. Tranquillo. A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to GRGDSP. Exp. Cell Res. 247:543–553, 1999.CrossRefPubMedGoogle Scholar
  30. 30.
    Knippenberg, M., M. N. Helder, B. Zandieh Doulabi, P. I. J. M. Wuisman, and J. Klein-Nulend. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem. Biophys. Res. Commun. 342:902–908, 2006.CrossRefPubMedGoogle Scholar
  31. 31.
    Kramer, J., C. Hegert, K. Guan, A. M. Wobus, P. K. Müller, and J. Rohwedel. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech. Dev. 92:193–205, 2000.CrossRefPubMedGoogle Scholar
  32. 32.
    Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408, 2001.CrossRefPubMedGoogle Scholar
  33. 33.
    Lu, L. L., Y. J. Liu, S. G. Yang, Q. J. Zhao, X. Wang, W. Gong, Z. B. Han, Z. S. Xu, Y. X. Lu, D. Liu, Z. Z. Chen, and Z. C. Han. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026, 2006.PubMedGoogle Scholar
  34. 34.
    Lu, X., X. Lv, Z. Sun, and Y. Zheng. Nanocomposites of poly(l-lactide) and surface-grafted TiO2 nanoparticles: synthesis and characterization. Eur. Polym. J. 44:2476–2481, 2008.CrossRefGoogle Scholar
  35. 35.
    Luiz Meirelles, L. M., T. Peltola, P. Kjellin, I. Kangasniemi, F. Currie, M. Andersson, T. Albrektsson, and A. Wennerberg. Effect of hydroxyapatite and titania nanostructures on early in vivo bone response. Clin.Implant Dentist. Rel. Res. 10:245–254, 2008.Google Scholar
  36. 36.
    Matthias, W., K. W. Laschke, T. Pohlemann, and M. D. Menger. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J. Biomed. Mater. Res. B 82B:494–505, 2007.CrossRefGoogle Scholar
  37. 37.
    Moss, D. Alkaline phosphatase isoenzymes. Clin. Chem. 28:2007–2016, 1982.PubMedGoogle Scholar
  38. 38.
    Noël, D., D. Gazit, C. Bouquet, F. Apparailly, C. Bony, P. Plence, V. Millet, G. Turgeman, M. Perricaudet, J. Sany, and C. Jorgensen. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22:74–85, 2004.CrossRefPubMedGoogle Scholar
  39. 39.
    Petrie Aronin, C. E., K. W. Sadik, A. L. Lay, D. B. Rion, S. S. Tholpady, R. C. Ogle, and E. A. Botchwey. Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J. Biomed. Mater. Res. A 89:632–641, 2009.PubMedGoogle Scholar
  40. 40.
    Phillips, J. E., K. L. Burns, J. M. Le Doux, R. E. Guldberg, and A. J. Garcia. Engineering graded tissue interfaces. Proc. Natl. Acad. Sci. USA 105:12170–12175, 2008.CrossRefPubMedGoogle Scholar
  41. 41.
    Reinholt, F., K. Hultenby, A. Oldberg, and D. Heinegård. Osteopontin–a possible anchor of osteoclasts to bone. Proc. Natl. Acad. Sci. 87:4473–4475, 1990.CrossRefPubMedGoogle Scholar
  42. 42.
    Ross, F., J. Chappel, J. Alvarez, D. Sander, W. Butler, M. Farach-Carson, K. Mintz, P. Robey, S. Teitelbaum, and D. Cheresh. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J. Biol. Chem. 268:9901–9907, 1993.PubMedGoogle Scholar
  43. 43.
    Sarugaser, R., D. Lickorish, D. Baksh, M. M. Hosseini, and J. E. Davies. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229, 2005.CrossRefPubMedGoogle Scholar
  44. 44.
    Scaglione, S., C. Ilengo, M. Fato, and R. Quarto. Hydroxyapatite-coated polycaprolactone wide mesh as a model of open structure for bone regeneration. Tissue Eng. A 15:155–163, 2009.CrossRefGoogle Scholar
  45. 45.
    Shen, H., X. Hu, F. Yang, J. Bei, and S. Wang. An injectable scaffold: rhBMP-2-loaded poly (lactide-co-glycolide)/hydroxyapatite composite microspheres. Acta Biomater. 2009.Google Scholar
  46. 46.
    Shi, X., Y. Wang, L. Ren, Y. Gong, and D. Wang. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm. Res. 26:422–430, 2009.CrossRefPubMedGoogle Scholar
  47. 47.
    Singh, M., C. Berkland, and M. S. Detamore. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng. B 14:341–366, 2008.CrossRefGoogle Scholar
  48. 48.
    Singh, M., N. Dormer, J. Salash, J. Christian, D. Moore, C. Berkland, and M. Detamore. Three-dimensional macroscopic scaffolds with a gradient in stiffness for functional regeneration of interfacial tissues. J. Biomed. Mater. Res. A. Available online ahead of print, 2010.Google Scholar
  49. 49.
    Singh, M., C. P. Morris, R. J. Ellis, M. S. Detamore, and C. Berkland. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng. C: Methods 14:299–309, 2008.CrossRefGoogle Scholar
  50. 50.
    Spinella-Jaegle, S., S. Roman-Roman, C. Faucheu, F. W. Dunn, S. Kawai, S. Galléa, V. Stiot, A. M. Blanchet, B. Courtois, R. Baron, and G. Rawadi. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone 29:323–330, 2001.CrossRefPubMedGoogle Scholar
  51. 51.
    Stokes, D., G. Liu, R. Dharmavaram, and D. Hawkins. Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochem. J. 360:461–470, 2001.CrossRefPubMedGoogle Scholar
  52. 52.
    Torres, F. G., S. N. Nazhat, S. H. Sheikh Md Fadzullah, V. Maquet, and A. R. Boccaccini. Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds. Compos. Sci. Technol. 67:1139–1147, 2007.CrossRefGoogle Scholar
  53. 53.
    Tracy, M. A., K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 20:1057–1062, 1999.CrossRefPubMedGoogle Scholar
  54. 54.
    Tuan, R. S., G. Boland, and R. Tuli. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 5:32–45, 2003.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang, H. S., S. C. Hung, S. T. Peng, C. C. Huang, H. M. Wei, Y. J. Guo, Y. S. Fu, M. C. Lai, and C. C. Chen. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337, 2004.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang, L., N. H. Dormer, L. Bonewald, and M. S. Detamore. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng. A. Available online ahead of print, 2010.Google Scholar
  57. 57.
    Wang, Y., X. Shi, L. Ren, C. Wang, and D.-A. Wang. Porous poly (lactic-co-glycolide) microsphere sintered scaffolds for tissue repair applications. Mater. Sci. Eng. C 29:2502–2507, 2009.CrossRefGoogle Scholar
  58. 58.
    Wang, L., M. Singh, L. F. Bonewald, and M. S. Detamore. Signalling strategies for osteogenic differentiation of human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering. J. Tissue Eng. Regen. Med. 3:398–404, 2009.CrossRefPubMedGoogle Scholar
  59. 59.
    Wang, L., I. Tran, K. Seshareddy, M. L. Weiss, and M. S. Detamore. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng. A 15:1009–1017, 2009.CrossRefGoogle Scholar
  60. 60.
    Wang, X., E. Wenk, X. Zhang, L. Meinel, G. Vunjak-Novakovic, and D. Kaplan. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Controlled Rel. 134:81–90, 2009.CrossRefGoogle Scholar
  61. 61.
    Wu, L., and J. Ding. In vitro degradation of three-dimensional porous poly(D, L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830, 2004.CrossRefPubMedGoogle Scholar
  62. 62.
    Wu, K. H., B. Zhou, C. T. Yu, B. Cui, S. H. Lu, Z. C. Han, and Y. L. Liu. Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. Ann. Thorac. Surg. 83:1491–1498, 2007.CrossRefPubMedGoogle Scholar
  63. 63.
    Yang, X., H. Roach, N. Clarke, S. Howdle, R. Quirk, K. Shakesheff, and R. Oreffo. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone 29:523–531, 2001.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhang, H., and S. Hollister. Comparison of bone marrow stromal cell behaviors on poly (caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. J. Biomater. Sci. Polym. Ed. 20:1975–1993, 2009.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhao, L., E. F. Burguera, H. H. K. Xu, N. Amin, H. Ryou, and D. D. Arola. Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate-chitosan-biodegradable fiber scaffolds. Biomaterials 31:840–847, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Nathan H. Dormer
    • 1
  • Milind Singh
    • 2
  • Limin Wang
    • 3
  • Cory J. Berkland
    • 4
    • 5
  • Michael S. Detamore
    • 5
    Email author
  1. 1.Bioengineering ProgramUniversity of KansasLawrenceUSA
  2. 2.Department of BioengineeringRice UniversityHoustonUSA
  3. 3.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  4. 4.Department of Pharmaceutical ChemistryUniversity of KansasLawrenceUSA
  5. 5.Department of Chemical and Petroleum EngineeringUniversity of KansasLawrenceUSA

Personalised recommendations