Annals of Biomedical Engineering

, Volume 38, Issue 8, pp 2499–2511 | Cite as

Permeability of Endothelial and Astrocyte Cocultures: In Vitro Blood–Brain Barrier Models for Drug Delivery Studies

  • Guanglei Li
  • Melissa J. Simon
  • Limary M. Cancel
  • Zhong-Dong Shi
  • Xinying Ji
  • John M. Tarbell
  • Barclay MorrisonIII
  • Bingmei M. FuEmail author


The blood–brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L p), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L p and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2–4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB.


In vitro blood–brain barrier bEnd3 Astrocyte Coculture Hydraulic conductivity Diffusive solute permeability Expression of junction proteins 



This work was supported in part by the Andrew Grove Foundation, the National Science Foundation CBET-0133775 and CBET-0754158, PSC-CUNY research award of the City University of New York, and the National Institutes of Health grant HL57093.


  1. 1.
    Abbott, N. J. Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200:629–638, 2002.CrossRefPubMedGoogle Scholar
  2. 2.
    Boveri, M., V. Berezowski, A. Price, S. Slupek, A. M. Lenfant, C. Benaud, T. Hartung, R. Cecchelli, P. Prieto, and M. P. Dehouck. Induction of blood-brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia 51:187–198, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Bowman, P. D., S. R. Ennis, K. E. Rarey, A. L. Betz, and G. W. Goldstein. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann. Neurol. 14:396–402, 1983.CrossRefPubMedGoogle Scholar
  4. 4.
    Braeckmans, K., L. Peeters, N. N. Sanders, S. C. De Smedt, and J. Demeester. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys. J. 85:2240–2252, 2003.CrossRefPubMedGoogle Scholar
  5. 5.
    Braga, J., J. M. Desterro, and M. Carmo-Fonseca. Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol. Biol. Cell 15:4749–4760, 2004.CrossRefPubMedGoogle Scholar
  6. 6.
    Brown, R. C., A. P. Morris, and R. G. O’Neil. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 1130:17–30, 2007.CrossRefPubMedGoogle Scholar
  7. 7.
    Cancel, L. M., A. Fitting, and J. M. Tarbell. In vitro study of LDL transport under pressurized (convective) conditions. Am. J. Physiol. Heart Circ. Physiol. 293:H126–132, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Cancel, L. M., and J. M. Tarbell. The role of apoptosis in LDL transport through cultured endothelial cell monolayers. Atherosclerosis 208:335–341, 2010.CrossRefPubMedGoogle Scholar
  9. 9.
    Crone, C., and S. P. Olesen. Electrical resistance of brain microvascular endothelium. Brain Res. 241:49–55, 1982.CrossRefPubMedGoogle Scholar
  10. 10.
    Cucullo, L., M. S. McAllister, K. Kight, L. Krizanac-Bengez, M. Marroni, M. R. Mayberg, K. A. Stanness, and D. Janigro. A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res. 951:243–254, 2002.CrossRefPubMedGoogle Scholar
  11. 11.
    Deli, M. A., C. S. Abraham, Y. Kataoka, and M. Niwa. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25:59–127, 2005.CrossRefPubMedGoogle Scholar
  12. 12.
    de Vries, H. E., M. C. M. BlomRoosemalen, M. van Oosten, A. G. deBoer, T. J. C. van Berkel, D. D. Breimer, and J. Kuiper. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J. Neuroimmunol. 64:37–43, 1996.CrossRefPubMedGoogle Scholar
  13. 13.
    Engvall, E. Structure and function of basement membranes. Int. J. Dev. Biol. 39:781–787, 1995.PubMedGoogle Scholar
  14. 14.
    Fletcher, N. F., D. J. Brayden, B. Brankin, S. Worrall, and J. J. Callanan. Growth and characterisation of a cell culture model of the feline blood-brain barrier. Vet. Immunol. Immunopathol. 109:233–244, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Fraser, P. A., A. D. Dallas, S. Davies, and P. A. Fraser. Measurement of filtration coefficient in single cerebral microvessels of the frog. J. Physiol. Lond. 423:343–361, 1990.PubMedGoogle Scholar
  16. 16.
    Gaillard, P. J., and A. G. de Boer. Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur. J. Pharm. Sci. 12:95–102, 2000.CrossRefPubMedGoogle Scholar
  17. 17.
    Gumbleton, M., and K. L. Audus. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J. Pharm. Sci. 90:1681–1698, 2001.CrossRefPubMedGoogle Scholar
  18. 18.
    Hamm, S., B. Dehouck, J. Kraus, K. Wolburg-Buchholz, H. Wolburg, W. Risau, R. Cecchelli, B. Engelhardt, and M. P. Dehouck. Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 315:157–166, 2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Haseloff, R. F., I. E. Blasig, H. C. Bauer, and H. Bauer. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell. Mol. Neurobiol. 25:25–39, 2005.CrossRefPubMedGoogle Scholar
  20. 20.
    Hawkins, B. T., and T. P. Davis. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57:173–185, 2005.CrossRefPubMedGoogle Scholar
  21. 21.
    Hurwitz, A. A., J. W. Berman, W. K. Rashbaum, and W. D. Lyman. Human fetal astrocytes induce the expression of blood-brain barrier specific proteins by autologous endothelial cells. Brain Res. 625:238–243, 1993.CrossRefPubMedGoogle Scholar
  22. 22.
    Johnston, H., P. J. Baker, M. Abel, H. M. Charlton, G. Jackson, L. Fleming, T. R. Kumar, and P. J. O’Shaughnessy. Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 145:318–329, 2004.CrossRefPubMedGoogle Scholar
  23. 23.
    Karyekar, C. S., A. Fasano, S. Raje, R. L. Lu, T. C. Dowling, and N. D. Eddington. Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J. Pharm. Sci. 92:414–423, 2003.CrossRefPubMedGoogle Scholar
  24. 24.
    Kemper, E. M., W. Boogerd, I. Thuis, J. H. Beijnen, and O. van Tellingen. Modulation of the blood-brain barrier in oncology: Therapeutic opportunities for the treatment of brain tumours? Cancer Treat. Rev. 30:415–423, 2004.CrossRefPubMedGoogle Scholar
  25. 25.
    Kleinman, H. K., and G. R. Martin. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15:378–386, 2005.CrossRefPubMedGoogle Scholar
  26. 26.
    Koto, T., K. Takubo, S. Ishida, H. Shinoda, M. Inoue, K. Tsubota, Y. Okada, and E. Ikeda. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am. J. Pathol. 170:1389–1397, 2007.CrossRefPubMedGoogle Scholar
  27. 27.
    Kraus, J., K. Voigt, A. M. Schuller, M. Scholz, K. S. Kim, M. Schilling, W. R. Schabitz, P. Oschmann, and B. Engelhardt. Interferon-beta stabilizes barrier characteristics of the blood-brain barrier in four different species in vitro. Mult. Scler. 14:843–852, 2008.CrossRefPubMedGoogle Scholar
  28. 28.
    Lawrence, J. R., G. M. Wolfaardt, and D. R. Korber. Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl. Environ. Microbiol. 60:1166–1173, 1994.PubMedGoogle Scholar
  29. 29.
    LeBleu, V. S., B. Macdonald, and R. Kalluri. Structure and function of basement membranes. Exp. Biol. Med. (Maywood, N.J.) 232:1121–1129, 2007.CrossRefGoogle Scholar
  30. 30.
    Leblond, C. P., and S. Inoue. Structure, composition, and assembly of basement membrane. Am. J. Anat. 185:367–390, 1989.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee, S. W., W. J. Kim, J. A. Park, Y. K. Choi, Y. W. Kwon, and K. W. Kim. Blood-brain barrier interfaces and brain tumors. Arch. Pharm. Res. 29:265–275, 2006.CrossRefPubMedGoogle Scholar
  32. 32.
    Malina, K. C., I. Cooper, and V. I. Teichberg. Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res. 1284:12–21, 2009.CrossRefGoogle Scholar
  33. 33.
    Michel, C. C., and F. E. Curry. Microvascular permeability. Physiol. Rev. 79:703–761, 1999.PubMedGoogle Scholar
  34. 34.
    Miosge, N. The ultrastructural composition of basement membranes in vivo. Histol. Histopathol. 16:1239–1248, 2001.PubMedGoogle Scholar
  35. 35.
    Nicolazzo, J. A., S. A. Charman, and W. N. Charman. Methods to assess drug permeability across the blood-brain barrier. J. Pharm. Pharmacol. 58:281–293, 2006.CrossRefPubMedGoogle Scholar
  36. 36.
    Omidi, Y., L. Campbell, J. Barar, D. Connell, S. Akhtar, and M. Gumbleton. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res. 990:95–112, 2003.CrossRefPubMedGoogle Scholar
  37. 37.
    Pardridge, W. M. Blood-brain barrier biology and methodology. J. Neurovirol. 5:556–569, 1999.CrossRefPubMedGoogle Scholar
  38. 38.
    Poller, B., H. Gutmann, S. Krahenbuhl, B. Weksler, I. Romero, P. O. Couraud, G. Tuffin, J. Drewe, and J. Huwyler. The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J. Neurochem. 107:1358–1368, 2008.CrossRefPubMedGoogle Scholar
  39. 39.
    Sahagun, G., S. A. Moore, and M. N. Hart. Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am. J. Physiol. 259:H162–166, 1990.PubMedGoogle Scholar
  40. 40.
    Salvetti, F., P. Cecchetti, D. Janigro, A. Lucacchini, L. Benzi, and C. Martini. Insulin permeability across an in vitro dynamic model of endothelium. Pharm. Res. 19:445–450, 2002.CrossRefPubMedGoogle Scholar
  41. 41.
    Santaguida, S., D. Janigro, M. Hossain, E. Oby, E. Rapp, and L. Cucullo. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res. 1109:1–13, 2006.CrossRefPubMedGoogle Scholar
  42. 42.
    Shi, Z. D., X. Y. Ji, D. E. Berardi, H. Qazi, and J. M. Tarbell. Interstitial flow induces MMP-1 expression and vascular SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism. Am. J. Physiol. Heart Circ. Physiol.. 298:H127–H135, 2010.CrossRefPubMedGoogle Scholar
  43. 43.
    Soga, N., J. O. Connolly, M. Chellaiah, J. Kawamura, and K. A. Hruska. Rac regulates vascular endothelial growth factor stimulated motility. Cell Commun. Adhes. 8:1–13, 2001.CrossRefPubMedGoogle Scholar
  44. 44.
    Sugaya, R., B. A. Wolf, and R. Kita. Thermal diffusion of dextran in aqueous solutions in the absence and the presence of urea. Biomacromolecules 7:435–440, 2006.CrossRefPubMedGoogle Scholar
  45. 45.
    Thompson, S. E., J. Cavitt, and K. L. Audus. Leucine-enkephalin effects on paracellular and transcellular permeation pathways across brain microvessel endothelial-cell monolayers. J. Cardiovasc. Pharmacol. 24:818–825, 1994.CrossRefPubMedGoogle Scholar
  46. 46.
    Tyagi, N., K. S. Moshal, U. Sen, T. P. Vacek, M. Kumar, W. M. Hughes, Jr, S. Kundu, and S. C. Tyagi. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid. Redox Signal. 11:25–33, 2009.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang, H., S. Y. Yan, H. Chai, G. M. Riha, M. Li, Q. Z. Yao, and C. Y. Chen. Shear stress induces endothelial transdifferentiation from mouse smooth muscle cells. Biochem. Biophys. Res. Commun. 346:860–865, 2006.CrossRefPubMedGoogle Scholar
  48. 48.
    Wang, R. S., S. Yeh, L. M. Chen, H. Y. Lin, C. X. Zhang, J. Ni, C. C. Wu, P. A. di Sant’Agnese, K. L. DeMesy-Bentley, C. R. Tzeng, and C. S. Chang. Androgen receptor in sertoli cell is essential for germ cell nursery and junctional complex formation in mouse testes. Endocrinology 147:5624–5633, 2006.CrossRefPubMedGoogle Scholar
  49. 49.
    Yamamoto, K., T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am. J. Physiol. Heart Circ. Physiol. 288:H1915–H1924, 2005.CrossRefPubMedGoogle Scholar
  50. 50.
    Yoder, E. J. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line. Glia 38:137–145, 2002.CrossRefPubMedGoogle Scholar
  51. 51.
    Yuan, W., G. Li, and B. M. Fu. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann. Biomed. Eng. 2010 Jan 20. Epub ahead of print.PMID: 20087768.Google Scholar
  52. 52.
    Yuan, W., Y. Lv, M. Zeng, and B. M. Fu. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc. Res. 77:166–173, 2009.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang, Y., C. S. W. Li, Y. Y. Ye, K. Johnson, J. Poe, S. Johnson, W. Bobrowski, R. Garrido, and C. Madhu. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab. Dispos. 34:1935–1943, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Guanglei Li
    • 1
  • Melissa J. Simon
    • 2
  • Limary M. Cancel
    • 1
  • Zhong-Dong Shi
    • 1
  • Xinying Ji
    • 1
  • John M. Tarbell
    • 1
  • Barclay MorrisonIII
    • 2
  • Bingmei M. Fu
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA
  2. 2.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations