Annals of Biomedical Engineering

, Volume 38, Issue 8, pp 2563–2576 | Cite as

Cytokine Antagonism Reduces Pain and Modulates Spinal Astrocytic Reactivity After Cervical Nerve Root Compression



Relationships between nerve root compression, behavioral sensitivity, spinal cytokines, and glial reactivity are not fully defined for painful cervical nerve root compression. Spinal cytokines were quantified after mechanical root compression (10gf), root exposure to inflammatory chromic gut material (chr), the combination of both insults together (10gf + chr) or sham. TNFα and IL-1β significantly increased at 1 h (p < 0.029). IL-1α was significantly increased over normal, sham and chr at 1 h following 10gf and over normal and sham after 10gf + chr (p < 0.048). By day 1, only IL-1β after 10gf remained elevated over normal (p = 0.038). Accordingly, the soluble TNF receptor-1 (sTNFR1) and the IL-1 receptor antagonist (IL-1ra) were separately administered at early time points after each injury. With sTNFR1, behavioral sensitivity was significantly decreased for 7 days after both 10gf and 10gf + chr (p < 0.005). Treatment with IL-1ra significantly reduced sensitivity for 10gf + chr (p < 0.034) but not for 10gf. Sensitivity remained significantly elevated over sham at all time points (p < 0.044). Spinal astrocytic reactivity significantly decreased for both treatments after 10gf (p < 0.002); but, only IL-1ra following 10gf + chr significantly reduced astrocytic reactivity (p < 0.001). Early increases in spinal TNFα, IL-1β, and IL-1α may induce pain, affect spinal astrocytic responses, and appear to have differential effects in mediating the behavioral hypersensitivity produced by different types of painful cervical radicular injuries.


Cytokine Pain Radiculopathy Astrocytes Nerve root Compression 


  1. 1.
    Aloisi, F. Immune function of microglia. Glia 36:165–179, 2001.CrossRefPubMedGoogle Scholar
  2. 2.
    Atlas, S., R. Keller, Y. Wu, R. Deyo, and D. Singer. Long-term outcomes of surgical and nonsurgical management of sciatica secondary to a lumbar disc herniation: 10 year results from the maine lumbar spine study. Spine 30:927–935, 2005.CrossRefPubMedGoogle Scholar
  3. 3.
    Binshtok, A., H. Wang, K. Zimmermann, F. Amaya, D. Vardeh, L. Shi, G. Brenner, R. Ji, B. Bean, C. Woolf, and T. Samad. Nociceptors are interleukin-1 beta sensors. J. Neurosci. 28:14062–14073, 2008.CrossRefPubMedGoogle Scholar
  4. 4.
    Colburn, R. W., A. J. Rickman, and J. A. DeLeo. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp. Neurol. 157:289–304, 1999.CrossRefPubMedGoogle Scholar
  5. 5.
    Davies, A. L., K. C. Hayes, and G. A. Dekaban. Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch. Phys. Med. Rehabil. 88:1384–1393, 2007.CrossRefPubMedGoogle Scholar
  6. 6.
    DeLeo, J. A., R. W. Colburn, M. Nichols, and A. Malhotra. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res. 16:695–700, 1996.CrossRefPubMedGoogle Scholar
  7. 7.
    DeLeo, J. A., and R. P. Yezierski. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6, 2001.CrossRefPubMedGoogle Scholar
  8. 8.
    Dinarello, C. A. IL-1α. In: Cytokine Reference, edited by J. J. Oppenheim and M. Feldman. New York: Academic Press, 2001, pp. 307–318.Google Scholar
  9. 9.
    Dinarello, C. A. IL-1β. In: Cytokine Reference, edited by J. J. Oppenheim and M. Feldman. New York: Academic Press, 2001, pp. 351–374.Google Scholar
  10. 10.
    Eskes, C., L. Juillerat-Jeanneret, G. Leuba, P. Honegger, and F. Monnet-Tschudi. Involvement of microglia–neuron interactions in the tumor necrosis factor release, microglial activation, and neurodegeneration induced by trimethyltin. J. Neurosci. Res. 71:583–590, 2003.CrossRefPubMedGoogle Scholar
  11. 11.
    Frymoyer, J. Back pain and sciatica. NEJM 318:291–300, 1988.PubMedGoogle Scholar
  12. 12.
    Goldenberg, M. Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin. Ther. 21:75–87, 1999.CrossRefPubMedGoogle Scholar
  13. 13.
    Hanisch, U. Microglia as a source and target of cytokines. Glia 40:140–155, 2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Hart, L., R. Deyo, and D. Cherkin. Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a U.S. national survey. Spine 20:11–19, 1995.CrossRefPubMedGoogle Scholar
  15. 15.
    Hashizume, H., J. A. DeLeo, R. W. Colburn, and J. N. Weinstein. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine 25:1206–1217, 2000.CrossRefPubMedGoogle Scholar
  16. 16.
    Homma, Y., S. J. Brull, and J. M. Zhang. A comparison of chronic pain behavior following local application of tumor necrosis factor α to the normal and mechanically compressed lumbar ganglia in the rat. Pain 95:239–246, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Hubbard, R. D., Z. Chen, and B. A. Winkelstein. Transient cervical nerve root compression modulates pain: load thresholds for allodynia and sustained changes in spinal neuropeptide expression. J. Biomech. 41:677–685, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Hubbard, R. D., J. J. Martinez, J. A. Burdick, and B. A. Winkelstein. Controlled release of GDNF reduces nerve root-mediated behavioral hypersensitivity. J. Orthop. Res. 27:120–127, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Hubbard, R. D., and B. A. Winkelstein. Transient cervical nerve root compression in the rat induces bilateral forepaw allodynia and spinal glial activation: mechanical factors in painful neck injuries. Spine 30:1924–1932, 2005.CrossRefPubMedGoogle Scholar
  20. 20.
    Ji, R., T. Kohno, K. Moore, and C. Woolf. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26:696–705, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    Kawasaki, Y., L. Zhang, J. Cheng, and R. Ji. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 28:5189–5194, 2008.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee, D., S. Iyengar, and D. Lodge. The role of uninjured nerve in spinal nerve ligated rats points to an improved animal model of neuropathic pain. Eur. J. Pain 7:473–479, 2003.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee, S., W. Liu, D. Dickson, C. Brosnan, and J. Berman. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1beta. J. Immunol. 150:2659–2667, 1993.PubMedGoogle Scholar
  24. 24.
    Lindenlaub, T., P. Teuteberg, T. Hartung, and C. Sommer. Effects of neutralizing antibodies to TNF-alpha on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Res. 866:15–22, 2000.CrossRefPubMedGoogle Scholar
  25. 25.
    Matsubayashi, T., H. Sugiura, T. Arai, T. Oh-Ishi, and Y. Inamo. Anakinra therapy for CINCA syndrome with a novel mutation in exon 4 of the CIAS1 gene. Acta Paediatr. 95:246–249, 2005.CrossRefGoogle Scholar
  26. 26.
    McMahon, S. B., W. B. Cafferty, and F. Marchand. Immune and glial cell factors as pain mediators and modulators. Exp. Neurol. 192:444–462, 2005.CrossRefPubMedGoogle Scholar
  27. 27.
    Mika, J., M. Korostynski, D. Kaminska, A. Wawrzczak-Bargiela, M. Osikowicz, W. Makuch, R. Przewlocki, and B. Przewlocka. Interleukin-1alpha has antiallodynic and antihyperalgesic activities in a rat neuropathic pain model. Pain 138:587–597, 2008.CrossRefPubMedGoogle Scholar
  28. 28.
    Murata, Y., K. Olmarker, I. Takahashi, K. Takahashi, and B. Rydevik. Effects of selective tumor necrosis factor-alpha inhibition to pain-behavioral changes caused by nucleus pulposus-induced damage to the spinal nerve in rats. Neurosci. Lett. 382:148–152, 2005.CrossRefPubMedGoogle Scholar
  29. 29.
    Newman, E. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26:536–542, 2003.CrossRefPubMedGoogle Scholar
  30. 30.
    Norimoto, M., S. Ohtori, M. Yamashita, G. Inoue, K. Yamauchi, T. Koshi, M. Suzuki, S. Orita, Y. Eguchi, A. Sugiura, N. Ochiai, M. Takaso, and K. Takahashi. Direct application of the TNF-alpha inhibitor, etanercept, does not affect CGRP expression and phenotypic change of DRG neurons following application of nucleus pulposus onto injured sciatic nerves in rats. Spine 33:2403–2408, 2008.CrossRefPubMedGoogle Scholar
  31. 31.
    Ohnmeiss, D., H. Vanharanta, and J. Ekholm. Degree of disc disruption and lower extremity pain. Spine 22:1600–1605, 1997.CrossRefPubMedGoogle Scholar
  32. 32.
    Ohtori, S., K. Takahashi, H. Moriya, and R. Myers. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine 29:1082–1088, 2004.CrossRefPubMedGoogle Scholar
  33. 33.
    Olmarker, K., and R. Myers. Pathogenesis of sciatic pain: role of herniated nucleus pulposus and deformation of spinal nerve root and dorsal root ganglion. Pain 78:99–105, 1998.CrossRefGoogle Scholar
  34. 34.
    Ozaktay, A., S. Kallakuri, T. Takebayashi, J. Cavanaugh, I. Asik, J. A. DeLeo, and J. N. Weinstein. Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur. Spine J. 15:1529–1537, 2006.CrossRefPubMedGoogle Scholar
  35. 35.
    Rhyu, K. W., A. J. Walsh, C. W. O’Neill, D. S. Bradford, and J. C. Lotz. The short-term effects of electrosurgical ablation on proinflammatory mediator production by intervertebral disc cells in tissue culture. Spine J. 7:451–458, 2007.CrossRefPubMedGoogle Scholar
  36. 36.
    Robinson, I., and T. Meert. Stability of neuropathic pain symptoms in partial sciatic nerve ligation in rats is affected by suture material. Neurosci. Lett. 373:125–129, 2005.CrossRefPubMedGoogle Scholar
  37. 37.
    Rohl, C., E. Armbrust, K. Kolbe, R. Lucius, E. Maser, S. Venz, and M. Gulden. Activated microglia modulate astroglial enzymes involved in oxidative and inflammatory stress and increase the resistance of astrocytes to oxidative stress in vitro. Glia 56:1114–1126, 2008.CrossRefPubMedGoogle Scholar
  38. 38.
    Rothman, S. M., B. B. Guarino, and B. A. Winkelstein. Spinal microglial proliferation is evident in a rat model of painful disc herniation both in the presence of behavioral hypersensitivity and following minocycline treatment sufficient to attenuate allodynia. J. Neurosci. Res. 87(12):2709–2717, 2009.CrossRefPubMedGoogle Scholar
  39. 39.
    Rothman, S. M., Z. Huang, K. E. Lee, C. L. Weisshaar, and B. A. Winkelstein. Cytokine mRNA expression in painful radiculopathy. J. Pain 10:90–99, 2009.CrossRefPubMedGoogle Scholar
  40. 40.
    Rothman, S. M., L. H. Ma, G. T. Whiteside, and B. A. Winkelstein. Inflammatory cytokine and chemokine expression in the dorsal root ganglion in a rat model of painful radiculopathy. Spine, 2010 (in press).Google Scholar
  41. 41.
    Rothman, S. M., and B. A. Winkelstein. Chemical and mechanical nerve root insults induce differential behavioral sensitivity and glial activation that are enhanced in combination. Brain Res. 1181:30–43, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Rydevik, B., M. Hasue, and P. Wehling. Etiology of sciatic pain and mechanisms of nerve root compression. In: The Lumbar Spine, edited by S. Wiesel, J. Weinsten, H. Herkowitz, J. Dvorak, and G. Bell. Philadelphia: WB Saunders Co., 1996, pp. 123–141.Google Scholar
  43. 43.
    Shamash, S., F. Reichert, and S. Rotshenker. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin- 1beta. J. Neurosci. 22:3052–3060, 2002.PubMedGoogle Scholar
  44. 44.
    Shih, A., H. Fernandes, F. Choi, M. Kozoriz, Y. Liu, P. Li, C. Cowan, and A. Klegeris. Policing the police: astrocyte modulate microglial activation. J. Neurosci. 26:3887–3888, 2006.CrossRefPubMedGoogle Scholar
  45. 45.
    Sommer, C., and M. Kress. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci. Lett. 361:184–187, 2004.CrossRefPubMedGoogle Scholar
  46. 46.
    Sotgiu, M., M. Brambilla, M. Valente, and G. Biella. Contralateral input modulates the excitability of dorsal horn neurons involved in noxious signal processes. Potential role in neuronal sensitization. Somatosens. Mot. Res. 21:211–215, 2004.CrossRefPubMedGoogle Scholar
  47. 47.
    Svensson, C. I., M. Schäfers, T. L. Jones, H. Powell, and L. S. Sorkin. Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci. Lett. 379:209–213, 2005.CrossRefPubMedGoogle Scholar
  48. 48.
    Sweitzer, S. M., R. W. Colburn, M. D. Rutkowski, and J. A. DeLeo. Acute peripheral inflammation induces moderate glial activation and spinal IL-1β expression that correlates with pain behavior in the rat. Brain Res. 829:209–221, 1999.CrossRefPubMedGoogle Scholar
  49. 49.
    Sweitzer, S. M., D. Martin, and J. A. DeLeo. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. J. Neurosci. 103:529–539, 2001.CrossRefGoogle Scholar
  50. 50.
    Taishi, P., L. Churchill, A. De, F. Obal, and J. Krueger. Cytokine mRNA induction by interleukin-1 beta or tumor necrosis factor alpha in vitro and in vivo. Brain Res. 1226:89–98, 2008.CrossRefPubMedGoogle Scholar
  51. 51.
    Wall, P., and R. Melzak. Textbook of Pain, 3rd edn. London: Churchill Livingstone, 2005.Google Scholar
  52. 52.
    Watkins, L. R., S. F. Maier, and L. E. Goehler. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63:289–302, 1995.CrossRefPubMedGoogle Scholar
  53. 53.
    Winkelstein, B. A. Mechanisms of central sensitization, neuroimmunology & injury biomechanics in persistent pain: implications for musculoskeletal disorders. Electromyogr. Kinesiol. 14:87–93, 2004.CrossRefGoogle Scholar
  54. 54.
    Winkelstein, B. A., M. D. Rutkowski, S. M. Sweitzer, J. L. Pahl, and J. A. DeLeo. Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J. Comp. Neurol. 439:127–139, 2001.CrossRefPubMedGoogle Scholar
  55. 55.
    Woolf, C., and M. Salter. Neuronal plasticity: increasing the gain in pain. Science 288:1765–1768, 2000.CrossRefPubMedGoogle Scholar
  56. 56.
    Wolf, G., R. Yirmiya, I. Goshen, K. Iverfeldt, L. Holmlund, K. Takeda, and Y. Shavit. Impairment of interleukin-1 (IL-1) signaling reduces basal pain sensitivity in mice: genetic, pharmacological and developmental aspects. Pain 104:471–480, 2003.CrossRefPubMedGoogle Scholar
  57. 57.
    Xu, J. T., W. J. Xin, Y. Zang, C. Y. Wu, and X. G. Liu. The role of tumor necrosis factor-alpha in the neuropathic pain induced by lumbar 5 ventral root transection in rat. Pain 123:306–321, 2006.CrossRefPubMedGoogle Scholar
  58. 58.
    Zelenka, M., M. Schafers, and C. Sommer. Intraneural injection of interleukin-1-beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain 116:257–263, 2005.CrossRefPubMedGoogle Scholar
  59. 59.
    Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110, 1983.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations