Annals of Biomedical Engineering

, Volume 38, Issue 8, pp 2690–2701 | Cite as

Simulated Thin Pericardial Bioprosthetic Valve Leaflet Deformation Under Static Pressure-Only Loading Conditions: Implications for Percutaneous Valves

  • Kewei Li
  • Wei SunEmail author


Percutaneous aortic valve (PAV) replacement is currently being investigated as an endovascular alternative to conventional open-chest valve surgery for patients with severe aortic stenosis. The results of multi-center clinical trials of PAV devices have been encouraging. However, there are serious adverse events associated with this procedure. Furthermore, long-term durability and safety of PAV need to be studied carefully. In this study, we developed a thin pericardial bioprosthetic valve model, which has similar design features of PAV. We utilized this model to investigate PAV deformation under static, pressure-only loading conditions using Finite Element method. Mechanical properties of PAV leaflet were obtained from planar biaxial testing of glutaraldehyde treated thin bovine pericardium (BP) and porcine pericardium (PP), and characterized by the Fung-elastic model. Simulations were performed to examine the effects of tissue thickness and anisotropy on the valve deformation and stress distribution. The results indicated peak stress and strain occurred in the vicinity of commissures. The peak maximum principal stresses (MPS) were reduced with the increase of leaflet tissue thickness, by 36% and 59% from the mean thickness to 0.35 mm for BP and PP, respectively. The PAV with BP leaflet had a lower peak MPS than that with PP leaflet. Moreover, leaflet material orientation had a significant influence on the peak MPS of PAV.


Percutaneous aortic valve replacement Finite element simulation Constitutive modeling Heart valve disease 



This research was supported in part by the State of Connecticut Department of Public Health Biomedical Research Grant DPH2010-0085 and the AHA SDG award 0930319N.


  1. 1.
    AHA, American Heart Association: Heart Disease and Stroke Statistics—2010 Update, 2010.Google Scholar
  2. 2.
    Balentine, J., and A. Eisenhart, Aortic Stenosis, Emergency Medicine, 2007.Google Scholar
  3. 3.
    Berland, G., P. Block, T. DeLoughery, and G. Grunkemeier. Clinical one-year outcomes after stenting in acute myocardial infarction. Cathet. Cardiovasc. Diagn. 40(4):337–341, 1997.CrossRefPubMedGoogle Scholar
  4. 4.
    Berry, C., A. Asgar, Y. Lamarche, B. Marcheix, P. Couture, A. Basmadjian, A. Ducharme, J. Laborde, R. Cartier, and R. Bonan, Novel therapeutic aspects of percutaneous aortic valve replacement with the 21F CoreValve Revalving System. Catheter. Cardiovasc. Interv., 4(70):610–616, 2007.CrossRefGoogle Scholar
  5. 5.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J. Biomech. Eng. 122(1):23–30, 2000.CrossRefPubMedGoogle Scholar
  6. 6.
    Cacciola, G., G. W. Peters, and F. P. Baaijens. A synthetic fiber-reinforced stentless heart valve. J. Biomech. 33(6):653–658, 2000.CrossRefPubMedGoogle Scholar
  7. 7.
    Cacciola, G., G. W. Peters, and P. J. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33(5):521–530, 2000.CrossRefPubMedGoogle Scholar
  8. 8.
    Christie, G. W. Computer modelling of bioprosthetic heart valves. Eur. J. Cardio-Thorac. Surg. 6:S95–S101, 1992.CrossRefGoogle Scholar
  9. 9.
    Christie, G. W., and B. G. Barratt-Boyes. On stress reduction in bioprosthetic heart valve leaflets by the use of a flexible stent. J. Card. Surg. 6(4):476–481, 1991.CrossRefPubMedGoogle Scholar
  10. 10.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer Verlag, 1993.Google Scholar
  11. 11.
    Gnyaneshwar, R., R. K. Kumar, and K. R. Balakrishnan. Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73(4):1122–1129, 2002.CrossRefPubMedGoogle Scholar
  12. 12.
    Grube, E., J. C. Laborde, U. Gerckens, T. Felderhoff, B. Sauren, L. Buellesfeld, R. Mueller, M. Menichelli, T. Schmidt, B. Zickmann, S. Iversen, and G. W. Stone. Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation. 114(15):1616–1624, 2006; Epub 2006 Oct.CrossRefPubMedGoogle Scholar
  13. 13.
    Grube, E., J. C. Laborde, B. Zickmann, U. Gerckens, T. Felderhoff, B. Sauren, A. Bootsveld, L. Buellesfeld, and S. Iversen. First report on a human percutaneous transluminal implantation of a self-expanding valve prothesis for interventional treatment of aortic valve stenosis. Catheter. Cardiovasc. Interv. 66(4):465–469, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Grube, E., G. Schuler, L. Buellesfeld, U. Gerckens, A. Linke, P. Wenaweser, B. Sauren, F. Mohr, T. Walther, B. Zickmann, S. Iversen, T. Felderhoff, R. Cartier, and R. Bonan. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J. Am. Coll. Cardiol. 1(50):69–76, 2007.CrossRefGoogle Scholar
  15. 15.
    Iung, B., G. Baron, E. G. Butchart, F. Delahaye, C. Gohlke-Barwolf, O. W. Levang, P. Tornos, J. L. Vanoverschelde, F. Vermeer, E. Boersma, P. Ravaud, and A. Vahanian. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 24(13):1231–1243, 2003.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic Simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2):262–275, 2008.CrossRefPubMedGoogle Scholar
  17. 17.
    Krucinski, S., I. Vesely, M. A. Dokainish, and G. Campbell. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26(8):929–943, 1993.CrossRefPubMedGoogle Scholar
  18. 18.
    Langdon, S. E., R. Chernecky, C. A. Pereira, D. Abdulla, and J. M. Lee. Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials. Biomaterials 20(2):137–153, 1999.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee, J. M., and S. E. Langdon. Thickness measurements of soft tissue biomaterials: a comparison of five methods. J. Biomech. 29(6):829–932, 1996.CrossRefPubMedGoogle Scholar
  20. 20.
    Libby, P., R. O. Bonow, D. P. Zipes, and D. L. Mann. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, PA: Saunders, An imprint of Elsevier, 2007.Google Scholar
  21. 21.
    Lutter, G., D. Kuklinski, G. Berg, P. von Samson, J. Martin, M. Handke, P. Uhrmeister, and F. Beyersdorf. Percutaneous aortic valve replacement: an experimental study. I. Studies on implantation. J. Thorac. Cardiovasc. Surg. 123(4):768–776, 2002.CrossRefPubMedGoogle Scholar
  22. 22.
    Marcheix, B., Y. Lamarche, C. Berry, A. Asgar, J. Laborde, A. Basmadjian, A. Ducharme, A. Denault, R. Bonan, and R. Cartier. Surgical aspects of endovascular retrograde implantation of the aortic CoreValve bioprosthesis in high-risk older patients with severe symptomatic aortic stenosis. J. Thorac. Cardiovasc. Surg. 5(134):1150–1156, 2007.Google Scholar
  23. 23.
    Movahed, M. Where are we going with percutaneous aortic valve replacement? Expert Rev. Cardiovasc. Ther. 6(5):997–998, 2007.CrossRefGoogle Scholar
  24. 24.
    Sacks, M. S., and C. J. Chuong. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Eng. 26(5):892–902, 1998.CrossRefPubMedGoogle Scholar
  25. 25.
    Sacks, M. S., and F. J. Schoen. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3):359–371, 2002.CrossRefPubMedGoogle Scholar
  26. 26.
    Schultz, C. J., A. Weustink, N. Piazza, A. Otten, N. Mollet, G. Krestin, R. J. van Geuns, P. de Feyter, P. W. J. Serruys, and P. de Jaegere. Geometry and degree of apposition of the CoreValve ReValving System with multislice computed tomography after implantation in patients with aortic stenosis. J. Am. Coll. Cardiol. 54(10):911–918, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    Simulia, Abaqus Analysis User’s Manual. Providence, RI, 2009.Google Scholar
  28. 28.
    Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6):905–914, 2005.CrossRefPubMedGoogle Scholar
  29. 29.
    Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar tissues. Biomech. Model. Mechanobiol. 4(2–3):190–199, 2005.CrossRefPubMedGoogle Scholar
  30. 30.
    Sun, W., M. S. Sacks, T. L. Sellaro, W. S. Slaughter, and M. J. Scott. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J. Biomech. Eng. 125:372–380, 2003.CrossRefPubMedGoogle Scholar
  31. 31.
    Sung, H. W., Y. Chang, C. T. Chiu, C. N. Chen, and H. C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47(2):116–126, 1999.CrossRefPubMedGoogle Scholar
  32. 32.
    US Market for Cardiac Surgery Devices, iData Research Inc., 2009.Google Scholar
  33. 33.
    Vesely, I. The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc. Pathol. 12(5):277–286, 2003.CrossRefPubMedGoogle Scholar
  34. 34.
    Webb, J. G., L. Altwegg, J.-B. Masson, S. A. Bugami, A. A. Ali, and R. A. Boone. A new transcatheter aortic valve and percutaneous valve delivery system. J. Am. Coll. Cardiol. 53(20):1855–1858, 2009.CrossRefPubMedGoogle Scholar
  35. 35.
    Webb, J., S. Pasupati, K. Humphries, C. Thompson, L. Altwegg, R. Moss, A. Sinhal, R. Carere, B. Munt, D. Ricci, J. Ye, A. Cheung, and S. Lichtenstein. Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation 7(116):755–763, 2007.CrossRefGoogle Scholar
  36. 36.
    Zajarias, A., and A. G. Cribier. Outcomes and safety of percutaneous aortic valve replacement. J. Am. Coll. Cardiol. 53(20):1829–1836, 2009.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Biomedical Engineering Program, Tissue Mechanics LaboratoryUniversity of ConnecticutStorrsUSA

Personalised recommendations