Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 8, pp 2606–2620 | Cite as

MR Image-Based Geometric and Hemodynamic Investigation of the Right Coronary Artery with Dynamic Vessel Motion

  • Ryo ToriiEmail author
  • Jennifer Keegan
  • Nigel B. Wood
  • Andrew W. Dowsey
  • Alun D. Hughes
  • Guang-Zhong Yang
  • David N. Firmin
  • Simon A. McG. Thom
  • X. Yun Xu
Article

Abstract

The aim of this study was to develop a fully subject-specific model of the right coronary artery (RCA), including dynamic vessel motion, for computational analysis to assess the effects of cardiac-induced motion on hemodynamics and resulting wall shear stress (WSS). Vascular geometries were acquired in the right coronary artery (RCA) of a healthy volunteer using a navigator-gated interleaved spiral sequence at 14 time points during the cardiac cycle. A high temporal resolution velocity waveform was also acquired in the proximal region. Cardiac-induced dynamic vessel motion was calculated by interpolating the geometries with an active contour model and a computational fluid dynamic (CFD) simulation with fully subject-specific information was carried out using this model. The results showed the expected variation of vessel radius and curvature throughout the cardiac cycle, and also revealed that dynamic motion of the right coronary artery consequent to cardiac motion had significant effects on instantaneous WSS and oscillatory shear index. Subject-specific MRI-based CFD is feasible and, if scan duration could be shortened, this method may have potential as a non-invasive tool to investigate the physiological and pathological role of hemodynamics in human coronary arteries.

Keywords

Coronary artery Magnetic resonance imaging Dynamic vessel motion Computational fluid dynamics 

Notes

Acknowledgments

This work was supported by the British Heart Foundation (PG/04/078) and The Foundation for Circulatory Health (ICCH/07/5015), and the first author is currently supported by the Magdi Yacoub Institute. This project was supported by the NIHR Cardiovascular Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London. The authors are also grateful for support from the NIHR Biomedical Research Centre Funding Scheme awarded to Imperial College Healthcare NHS Trust.

References

  1. 1.
    Augst, A. D., B. Ariff, S. A. Thom, X. Y. Xu, and A. D. Hughes. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am. J. Physiol. Heart Circ. Physiol. 293:1031–1037, 2007.CrossRefGoogle Scholar
  2. 2.
    Barth, T. J., and D. C. Jesperson. The design and application of upwind schemes on unstructured meshes. AIAA paper 89-0366, 1989.Google Scholar
  3. 3.
    Bi, X., J. Park, A. C. Larson, Q. Zhang, O. Simonetti, and D. Li. Contrast-enhanced 4D radial coronary artery imaging at 3.0T within a single breath-hold. Magn. Reson. Med. 54:470–475, 2005.CrossRefPubMedGoogle Scholar
  4. 4.
    Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma arterial wall shear—observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. In: Proceedings of the Royal Society London (Biology), 1971, pp. 109–159.Google Scholar
  5. 5.
    Carsten, W., J. Schnorr, N. Kaufels, S. Wagner, H. Pilgrimm, B. Hamm, and M. Taupitz. Whole heart coronary magnetic resonance angiography: contrast enhanced time-resolved 3D imaging. Invest. Radiol. 42:550–557, 2007.CrossRefGoogle Scholar
  6. 6.
    Catmull, E., and R. Rom. A class of local interpolating splines. In: Computer Aided Geometric Design, edited by R. Barnhill and R. Reisenfeld. Academic Press, 1974.Google Scholar
  7. 7.
    Cheruvu, P. K., V. A. Finn, C. Gardner, J. Caplan, J. Goldstein, G. W. Stone, R. Virmani, and J. E. Muller. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries. J. Am. Coll. Cardiol. 50:940–949, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Dempster, A. P., N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39:1–38, 1977.Google Scholar
  9. 9.
    DiMario, C., P. J. de Feyter, C. J. Slager, P. de Jaeger, J. R. Roelandt, and P. W. Serruys. Intracoronary blood flow velocity and trans-stenotic pressure gradient using sensor-tip pressure and Doppler guidewires: a new technology for the assessment of stenosis severity in the catheterisation laboratory. Cathet. Cardiovasc. Diagn. 28:311–319, 1993.CrossRefGoogle Scholar
  10. 10.
    Ding, Z., H. Zhu, and M. H. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 30:419–429, 2002.CrossRefPubMedGoogle Scholar
  11. 11.
    Dodge, J. T., B. G. Brown, E. L. Bolson, and H. T. Dodge. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246, 1992.PubMedGoogle Scholar
  12. 12.
    Dowsey, A. W., J. Keegan, M. Lerotic, S. A. Thom, D. A. Firmin, and G. Z. Yang. Motion-compensated MR valve imaging with COMB tag tracking and super-resolution enhancement. Med. Image Anal. 11:478–491, 2007.CrossRefPubMedGoogle Scholar
  13. 13.
    Fox, B., K. James, B. Morgan, and W. A. Seed. Distribution of fatty and fibrous plaques in young human coronary arteries. Atherosclerosis 41:337–347, 1982.CrossRefPubMedGoogle Scholar
  14. 14.
    Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear dependent thickening of the human arterial intima. Atherosclerosis 60:161–171, 1986.CrossRefPubMedGoogle Scholar
  15. 15.
    Ge, J., R. Erbel, T. Gerber, G. Görge, L. Koch, M. Haude, and J. Meyer. Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo. Heart 71:572–578, 1994.CrossRefGoogle Scholar
  16. 16.
    He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. Trans. ASME J. Biomech. Eng. 118:74–82, 1996.CrossRefGoogle Scholar
  17. 17.
    Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X.-M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.CrossRefPubMedGoogle Scholar
  18. 18.
    Hort, W., H. Lichti, H. Kalbfleisch, F. Kohler, H. Frenzel, and U. Milzner-Schwarz. The size of human coronary arteries depending on the physiological and pathological growth of the heart the age, the size of the supplying areas and the degree of coronary sclerosis. A postmortem study. Virchows Archiv. 397:37–59, 1982.Google Scholar
  19. 19.
    Huo, Y., T. Wischgoll, and G. S. Kassab. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 293:H2959–H2970, 2007.CrossRefPubMedGoogle Scholar
  20. 20.
    Hutchinson, B. R., P. F. Galpin, and G. D. Raithby. A multigrid method based on the additive correction strategy. Numer. Heart Transfer 9:511–537, 1986.Google Scholar
  21. 21.
    Jackson, J. I., C. H. Meyer, D. G. Nishimura, and A. Macovski. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imaging 10:473–478, 1991.CrossRefPubMedGoogle Scholar
  22. 22.
    Jackson, M. J., N. B. Wood, S. Z. Zhao, A. Augst, J. H. Wolfe, W. M. W. Gedroyc, A. D. Hughes, S. A. Thom, and X. Y. Xu. Low wall shear stress predicts subsequent development of wall hypertrophy in lower limb bypass grafts. Artery Res. 2009 (in press). doi: 10.1016/j.artres.2009.1001.1001.
  23. 23.
    Jahnke, C., I. Paetsch, K. Nehrke, B. Schnackenburg, R. Gabker, E. Flecke, and E. Nagel. Rapid and complete coronary artery tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur. Heart J. 26:2313–2319, 2005.CrossRefPubMedGoogle Scholar
  24. 24.
    Kass, M., A. Witkin, and D. Terzopoulos. Snakes: active contour models. Int. J. Comput. Vision 1:321–331, 1987.CrossRefGoogle Scholar
  25. 25.
    Keegan, J., P. D. Gatehouse, R. H. Mohiaddin, G. Z. Yang, and D. N. Firmin. Comparison of spiral and FLASH phase velocity mapping, with and without breath-holding, for the assessment of left and right coronary artery blood flow velocity. J. Magn. Reson. Imaging 19:40–49, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Keegan, J., P. D. Gatehouse, G. Z. Yang, and D. N. Firmin. Spiral phase velocity mapping of left and right coronary artery blood flow: correction for through-plane motion using selective fat-only excitation. J. Magn. Reson. Imaging 20:953–960, 2004.CrossRefPubMedGoogle Scholar
  27. 27.
    Kleinstreuer, C., S. Hyun, J. R. J. Buchanan, P. W. Longest, J. P. J. Archie, and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.PubMedGoogle Scholar
  28. 28.
    Kozerke, S., M. B. Scheidegger, E. M. Pedersen, and P. Boesiger. Heart motion adopted cine phase-contrast flow measurements throught the aortic valve. Magn. Reson. Med. 42:970–978, 1999.CrossRefPubMedGoogle Scholar
  29. 29.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302, 1985.PubMedGoogle Scholar
  30. 30.
    Lai, P., F. Huang, A. C. Laron, and D. Li. Fast four-dimensional coronary MR angiography with k-t GRAPPA. J. Magn. Reson. Imaging 27:659–665, 2008.CrossRefPubMedGoogle Scholar
  31. 31.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282:2035–2042, 1999.CrossRefGoogle Scholar
  32. 32.
    Meyer, C. H., B. S. Hu, D. G. Nishimura, and A. Macovski. Fast spiral coronary artery imaging. Magn. Reson. Med. 28:202–213, 1992.CrossRefPubMedGoogle Scholar
  33. 33.
    Moore, J. E., E. Weydahl, and A. Santamarina. Frequency dependence of dynamic curvature effects on flow through coronary arteries. Trans. ASME J. Biomech. Eng. 123:129–133, 2001.CrossRefGoogle Scholar
  34. 34.
    Nakatani, S., M. Yamagishi, J. Tamai, Y. Goto, T. Umeno, A. Kawaguchi, C. Yutani, and K. Miyatake. Coronary artery disease/interventions: assessment of coronary artery distensibility by intravascular ultrasound: application of simultaneous measurements of luminal area and pressure. Circulation 91:2904–2910, 1995.PubMedGoogle Scholar
  35. 35.
    Olgac, U., D. Poulikakos, S. C. Saur, H. Alkandhi, and V. Kurtcuoglu. Patient-specific three-dimensional simulation of LDL accumulation in a human left coronary artery in its healthy and atherosclerotic states. Am. J. Physiol. Heart Circ. Physiol. 296:H1969–H1982, 2009.CrossRefPubMedGoogle Scholar
  36. 36.
    Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299, 2000.CrossRefPubMedGoogle Scholar
  37. 37.
    Plein, S., T. R. Jones, J. P. Ridgway, and M. U. Siyananthan. Three-dimensional coronary MR angiography performed with subject-specific cardiac acquisition windows and motion-adapted respiratory gating. Am. J. Roentgenol. 180:505–512, 2003.Google Scholar
  38. 38.
    Prosi, M., K. Perktold, Z. Ding, and M. H. Friedman. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37:1767–1775, 2004.CrossRefPubMedGoogle Scholar
  39. 39.
    Qiu, Y., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng. Trans. ASME 122:77–85, 2000.CrossRefGoogle Scholar
  40. 40.
    Sakuma, H., Y. Ichikawa, S. Chino, T. HIrano, K. Makino, and K. Takeda. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J. Am. Coll. Cardiol. 48:1951–1952, 2006.CrossRefGoogle Scholar
  41. 41.
    Santamarina, A., E. Weydahl, J. M. Siegel, and J. E. Moore. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Ann. Biomed. Eng. 26:944–954, 1998.CrossRefPubMedGoogle Scholar
  42. 42.
    Schaar, A. J., C. L. de Korte, F. Mastik, L. C. A. van Damme, R. Krams, P. W. Serruys, and A. F. W. van der Steen. Three-dimensional palpography of human coronary arteries. Herz 30:125–133, 2005.CrossRefPubMedGoogle Scholar
  43. 43.
    Shechter, G., J. R. Resar, and E. R. McVeigh. Rest period duration of the coronary arteries: implications for magnetic resonance coronary angiography. Med. Phys. 32:255–262, 2005.CrossRefPubMedGoogle Scholar
  44. 44.
    Slager, C. J., J. J. Wentzel, F. J. H. Gijsen, J. C. H. Schuurbiers, A. C. Van der Wal, A. F. W. Van der Steen, and P. W. Serruys. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Clin. Pract. Cardiovasc. Med. 2:401–407, 2005.CrossRefPubMedGoogle Scholar
  45. 45.
    Slager, C. J., J. J. Wentzel, F. J. H. Gijsen, A. Thury, A. C. van der Wal, J. A. Schaar, and P. W. Serruys. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat. Clin. Pract. Cardiovasc. Med. 2:456–464, 2005.CrossRefPubMedGoogle Scholar
  46. 46.
    Torii, R., N. B. Wood, N. Hadjiloizou, A. W. Dowsey, A. R. Wright, A. D. Hughes, J. Davies, D. Francis, J. Mayet, G. Z. Yang, S. A. Thom, and X. Y. Xu. Stress phase-angle depicts differences in coronary artery hemodynamics due to changes in flow and geometry after percutaneous coronary intervention. Am. J. Physiol. Heart Circ. Physiol. 296:H765–H776, 2009.CrossRefPubMedGoogle Scholar
  47. 47.
    Torii, R., N. B. Wood, N. Hadjiloizou, A. W. Dowsey, A. R. Wright, A. D. Hughes, J. Davies, D. P. Francis, J. Mayet, G. Z. Yang, S. A. M. Thom, and X. Y. Xu. Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun. Numer. Methods Eng. 25:565–580, 2009.CrossRefGoogle Scholar
  48. 48.
    Wang, Y., E. VIdan, and G. W. Bergman. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758, 1999.PubMedGoogle Scholar
  49. 49.
    Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.PubMedGoogle Scholar
  50. 50.
    Wu, Y. W., E. Tadamura, M. Yamamuro, S. Kanao, K. Nakayama, and K. Togashi. Evaluation of three-dimensional navigator-gated whole heart MR coronary angiography: the importance of systolic imaging in subjects with high heart rates. Eur. J. Radiol. 61:91–96, 2007.CrossRefPubMedGoogle Scholar
  51. 51.
    Xu, C., and J. L. Prince. Snakes, shapes and gradient vector flow. IEEE Trans. Image Process. 7:359–369, 1998.CrossRefPubMedGoogle Scholar
  52. 52.
    Zeng, D., E. Boutsianis, M. Ammann, K. Boomsma, S. Wildermuth, and D. Poulikakos. A study on the compliance of a right coronary artery and its impact on wall shear stress. Trans. ASME J. Biomech. Eng. 130:041014-1–041014-11, 2008.Google Scholar
  53. 53.
    Zeng, D., Z. Ding, M. H. Friedman, and C. R. Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31:420–429, 2003.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhu, H., and M. H. Friedman. Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler. Thromb. Vasc. Biol. 23:2260–2265, 2003.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu, H., J. J. Warner, T. R. Gehrig, and M. H. Friedman. Comparison of coronary artery dynamics pre- and post-stenting. J. Biomech. 36:689–697, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Ryo Torii
    • 1
    Email author
  • Jennifer Keegan
    • 2
  • Nigel B. Wood
    • 1
  • Andrew W. Dowsey
    • 3
  • Alun D. Hughes
    • 4
  • Guang-Zhong Yang
    • 3
  • David N. Firmin
    • 2
  • Simon A. McG. Thom
    • 4
  • X. Yun Xu
    • 1
  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK
  2. 2.Cardiovascular MR unitRoyal Brompton HospitalLondonUK
  3. 3.Royal Society/Wolfson Medical Image Computing LaboratoryImperial College LondonLondonUK
  4. 4.International Centre for Circulatory HealthImperial College London & Imperial College Healthcare NHS TrustLondonUK

Personalised recommendations