Annals of Biomedical Engineering

, Volume 38, Issue 3, pp 640–648 | Cite as

Effects of Hydroxyapatite and Biostite® on Osteogenic Induction of hMSC

  • Lorella Marinucci
  • Stefania Balloni
  • Ennio Becchetti
  • Giovanni Bistoni
  • Edoardo Maria Calvi
  • Eleonora Lumare
  • Filippo Ederli
  • Paola Locci


When isolated from the iliac crest human mesenchymal stem cells (hMSC) differentiate into osteoblast-like cells with appropriate stimulation in culture. This in vitro study tested the hypothesis that Biostite® and hydroxyapatite (HA) affect proliferation and differentiation of hMSC into osteoblastic cells. Cell proliferation was determined by measuring 3H-thymidine incorporation into DNA and typical markers of osteoblastic phenotype were determined by RT-PCR assay. No differences emerged in cell proliferation cultures with Biostite® or hydroxyapatite (HA), but gene expression analysis revealed higher expression of collagen, alkaline phosphatase (ALP), osteopontin and bone sialoprotein (BSP) in the presence of Biostite®. TGFβ2 production, as assessed by an Elisa kit, and Runx2 expression by RT-PCR, were greater in Biostite cultures, suggesting Biostite® provides a better environment for hMSC differentiation into osteoblasts and is, potentially, a more promising bone-filling material than HA.


Biomaterials Osteoblastic differentiation Extracellular matrix production TGFβ2 



We thank Dr. G.A. Boyd for help with the English translation. Moreover we thank the Fondazione Cassa di Risparmio of Perugia for providing the instruments for in vitro experiments.


  1. 1.
    Banerjee, C., A. Javed, J. Y. Choi, J. Green, V. Rosen, A. J. van Wijnen, J. L. Stein, J. B. Lian, and G. S. Stein. Differential regulation of the two principal Runx2/Cbfa1 N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 142:4026–4039, 2001.CrossRefPubMedGoogle Scholar
  2. 2.
    Benquè, E., S. Zahedi, D. Brocard, P. Marin, G. Brunel, and F. Elharar. Tomodensitometric and histologic evaluation of the combined use of collagen membrane and hydroxyapatite spacer for guide bone regeneration: a clinical report. Int. J. Oral Maxillofac. Implants 14:258–264, 1999.PubMedGoogle Scholar
  3. 3.
    Bodo, M., C. Lilli, C. Bellucci, P. Carinci, M. Calvitti, F. Pezzetti, G. Stabellini, S. Bellocchio, C. Balducci, F. Carinci, and T. Baroni. Basic fibroblast growth factor autocrine loop controls human osteosarcoma phenotyping and differentiation. Mol. Med. 8:393–404, 2002.PubMedGoogle Scholar
  4. 4.
    Brunel, G., D. Brocard, J. F. Duffort, E. Jacquet, P. Justumus, T. Simonet, and E.-P. Benquè. Bioabsorbable materials for guided bone regeneration prior to implant placement and 7-year follow-up: report of 14 cases. J. Periodontol. 72:257–264, 2001.CrossRefPubMedGoogle Scholar
  5. 5.
    Cowles, E. A., L. L. Brailey, and G. A. Gronowicz. Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J. Biomed. Mater. Res. 52:725–737, 2000.CrossRefPubMedGoogle Scholar
  6. 6.
    Deligianni, D. D., N. D. Katsala, P. G. Koutsoukos, and Y. F. Missirlis. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22:87–96, 2001.CrossRefPubMedGoogle Scholar
  7. 7.
    Frank, O., M. Heim, M. Jacob, A. Barbero, D. Schäfer, I. Bendik, W. Dick, M. Heberer, and I. Martin. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J. Cell. Biochem. 85:737–746, 2002.CrossRefPubMedGoogle Scholar
  8. 8.
    Ganss, B., R. H. Kim, and J. Sodek. Bone sialoprotein. Crit. Rev. Oral Biol. Med. 10:79–98, 1999.CrossRefPubMedGoogle Scholar
  9. 9.
    Gilbert, L., X. He, P. Farmer, J. Rubin, H. Drissi, A. J. van Wijnen, J. B. Lian, G. S. Stein, and M. S. Nanes. Expression of the osteoblast differentiation factor Runx2 (Cbfa1/AML3/Pebp2αA) is inhibited by tumor necrosis factor-α. J. Biol. Chem. 277:2695–2701, 2002.CrossRefPubMedGoogle Scholar
  10. 10.
    Hering, S., E. Isken, C. Knabbe, J. Jannot, C. Jost, A. Pommer, G. Muhr, H. Schatz, and A. F. Pfeiffer. TGFbeta1 and TGFbeta2 mRNA and protein expression in human bone samples. Exp. Clin. Endocrinol. Diabetes 109:217–226, 2001.CrossRefPubMedGoogle Scholar
  11. 11.
    Hsu, F. Y., S. C. Chueh, and Y. J. Wang. Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials 20(20):1931–1936, 1999.CrossRefPubMedGoogle Scholar
  12. 12.
    Ibbotson, K. J., J. Harrod, M. Gowen, S. D’Souza, D. D. Smith, M. E. Winkler, R. Derynck, and G. R. Mundy. Human recombinant transforming growth factor α stimulates bone resorption and inhibits formation in vitro. Proc. Natl. Acad. Sci. USA 83:2228–2232, 1986.CrossRefPubMedGoogle Scholar
  13. 13.
    Kasugai, S., T. Nagata, and J. Sodek. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J. Cell. Physiol. 152:467–477, 1992.CrossRefPubMedGoogle Scholar
  14. 14.
    Komori, T. Requisite roles of Runx2 and Cbfb in skeletal development. J. Bone Miner. Metab. 21:193–197, 2003.PubMedGoogle Scholar
  15. 15.
    Lee, K. S., H. J. Kim, Q. L. Li, X. Z. Chi, C. Ueta, T. Komori, J. M. Wozney, E. G. Kim, J. Y. Choi, H. M. Ryoo, and S. C. Bae. Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell. Biol. 20:8783–8792, 2000.CrossRefPubMedGoogle Scholar
  16. 16.
    Lilli, C., L. Marinucci, G. Stabellini, S. Belcastro, E. Becchetti, C. Balducci, N. Staffolani, and P. Locci. Biomembranes enriched with TGFb1 favor bone matrix protein expression by human osteoblasts in vitro. J. Biomed. Mater. Res. 63:577–582, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Locci, P., E. Becchetti, M. Pugliese, L. Rossi, S. Belcastro, M. Calvitti, G. Pietrarelli, and N. Staffolani. Phenotype expression of human bone cells cultured on implant substrates. Cell Biochem. Funct. 15:163–170, 1997.CrossRefPubMedGoogle Scholar
  18. 18.
    Lowry, O. H., N. J. Rosebrough, A. J. Farr, and R. J. Randall. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265–275, 1951.PubMedGoogle Scholar
  19. 19.
    Marinucci, L., S. Balloni, E. Becchetti, S. Belcastro, M. Guerra, M. Calvitti, C. Lilli, E. M. Calvi, and P. Locci. Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro. Int. J. Oral Maxillofac. Implants 21:719–725, 2006.PubMedGoogle Scholar
  20. 20.
    Marinucci, L., C. Lilli, M. Guerra, S. Belcastro, E. Becchetti, G. Stabellini, E. M. Calvi, and P. Locci. Biocompatibility of collagen membranes cross-linked with glutaraldehyde or diphenylphosphoryl azide: an in vitro study. J. Biomed. Mater. Res. 67:504–509, 2003.CrossRefGoogle Scholar
  21. 21.
    Matsuoka, H., H. Akiyama, Y. Okada, H. Ito, C. Shigeno, J. Konishi, T. Kokubo, and T. Nakamura. In vitro analysis of the stimulation of bone formation by highly bioactive apatite- and wollastonite-containing glass-ceramic: released calcium ions promote osteogenic differentiation in osteoblastic ROS 17/2.8 cells. J. Biomed. Mater. Res. 47:176–188, 1999.CrossRefPubMedGoogle Scholar
  22. 22.
    Moursi, A. M., R. K. Globus, and C. H. Damsky. Interactions between integrin receptors and fibronectin are required for calvarian osteoblast differentiation in vitro. J. Cell Sci. 110:2187–2196, 1997.PubMedGoogle Scholar
  23. 23.
    Nieden, N. I., G. Kempka, and H. J. Ahr. In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71:18–27, 2003.CrossRefPubMedGoogle Scholar
  24. 24.
    Ogiso, M. Bone formation on HA implants: a commentary. J. Long-Term Eff. Med. Impl. 8:193–200, 1998.Google Scholar
  25. 25.
    Ozawa, S., and S. Kasugai. Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 17:23–29, 1996.CrossRefPubMedGoogle Scholar
  26. 26.
    Park, E. K., Y. E. Lee, J. Y. Choi, S. H. Oh, H. I. Shin, K. H. Kim, S. Y. Kim, and S. Kim. Cellular biocompatibility and stimulatory effects of calcium metaphosphate on osteoblastic differentiation of human bone marrow-derived stromal cells. Biomaterials 25:3403–3411, 2004.CrossRefPubMedGoogle Scholar
  27. 27.
    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.CrossRefPubMedGoogle Scholar
  28. 28.
    Rebaudi, A., P. Silvestrini, and P. Trisi. Use of a resorbable hydroxyapatite-collagen Chondroitin material on immediate post extraction sites: a clinical and histologic study. Int. J. Periodontics Restorative Dent. 23:371–379, 2003.PubMedGoogle Scholar
  29. 29.
    Scabbia, A., and L. Trombelli. A comparative study on the use of a HA/collagen/Chondroitin sulphate biomaterial (Biostite) and a bovine-derived HA xenograft (Bio-Oss) in the treatment of deep intra-osseous defects. J. Clin. Periodontol. 31:348–355, 2004.CrossRefPubMedGoogle Scholar
  30. 30.
    Schneider, G. B., R. Zaharias, and C. Stanford. Osteoblast integrin adhesion and signaling regulate mineralization. J. Dent. Res. 80:1540–1544, 2001.CrossRefPubMedGoogle Scholar
  31. 31.
    Serre, C. M., M. Papillard, P. Chavassieux, and G. Boivin. In vitro induction of calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructural comparison of three types of biomaterials. Biomaterials 14:97–106, 1993.CrossRefPubMedGoogle Scholar
  32. 32.
    Shui, C., T. C. Spelsberg, B. L. Riggs, and S. Khosla. Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J. Bone Miner. Res. 18:213–221, 2003.CrossRefPubMedGoogle Scholar
  33. 33.
    Sibilla, P., A. Sereni, G. Aguiari, M. Banzi, E. Manzati, C. Mischiati, L. Trombelli, and L. del Senno. Effects of hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J. Dent. Res. 85:354–358, 2006.CrossRefPubMedGoogle Scholar
  34. 34.
    Simmons, D. J. The in vivo role of bone marrow fibroblast-like stromal cells. Calcif. Tissue Int. 58:129–132, 1996.PubMedGoogle Scholar
  35. 35.
    Simmons, C. A., S. Matlis, A. J. Thornton, S. Chen, C. Y. Wang, and D. J. Mooney. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 36:1087–1096, 2003.CrossRefPubMedGoogle Scholar
  36. 36.
    Stabellini, G., M. Vertemati, P. Locci, M. Calvitti, E. Minola, C. Calastrini, A. Pellati, F. Carinci, L. Marinucci, C. Lilli, and T. Baroni. In vitro human osteoblast and extracellular matrix changes after transforming growth factor beta 1 treatment. Pathology 37:347–354, 2005.CrossRefPubMedGoogle Scholar
  37. 37.
    Stadlinger, B., E. Pilling, M. Huhle, R. Mai, S. Biebaum, D. Scharnweber, E. Kuhlisch, R. Loukota, and U. Eckelt. Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study. Int. J. Oral Maxillofac. Surg. 37:54–59, 2008.CrossRefPubMedGoogle Scholar
  38. 38.
    Sumanasinghe, R. D., S. H. Bernacki, and E. G. Loboa. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 12:3459–3465, 2006.CrossRefPubMedGoogle Scholar
  39. 39.
    Sumner, D. R., T. M. Turner, M. Cohen, P. Losavio, R. M. Urban, E. H. Nichols, and J. M. McPherson. Aging does not lessen the effectiveness of TGFβ2-enhanced bone regeneration. J. Bone Miner. Res. 18:730–736, 2003.CrossRefPubMedGoogle Scholar
  40. 40.
    Villarreal, D. R., A. Sogal, and J. L. Ong. Protein absorption and osteoblasts response to different calcium phosphate surfaces. J. Oral Implantol. 24:67–73, 1998.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang, M. L., L. J. Nesti, R. Tuli, J. Lazatin, K. G. Danielson, P. F. Sharkey, and R. S. Tuan. Titanium particles suppress expression of osteoblastic phenotype in human mesenchymal stem cells. J. Orthopaed. Res. 20:1175–1184, 2002.CrossRefGoogle Scholar
  42. 42.
    Webster, D. F., and W. Harvey. A quantitative assay for collagen synthesis in microwell fibroblast cultures. Anal. Biochem. 96:220–224, 1979.CrossRefPubMedGoogle Scholar
  43. 43.
    Wheeler, E. F., H. Gong, R. Grimes, D. Benoit, and L. Vazquez. p75NTR and Trk receptors are expressed in reciprocal patterns in a wide variety of non-neural tissues during rat embryonic development, indicating independent receptor functions. J. Comp. Neurol. 391:407–428, 1998.CrossRefPubMedGoogle Scholar
  44. 44.
    Wollenweber, M., H. Domaschke, T. Hanke, S. Boxberger, G. Schmack, K. Gliesche, D. Scharnweber, and H. Worch. Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng. 12:345–359, 2006.CrossRefPubMedGoogle Scholar
  45. 45.
    Xiao, Z. S., R. Thomas, T. K. Hinson, and L. D. Quarles. Genomic structure and isoform expression of the mouse rat and human Cbfa1/Osf2 transcription factor. Gene 214:187–197, 1998.CrossRefPubMedGoogle Scholar
  46. 46.
    Zambonin, G., and M. Grano. Biomaterials in orthopedic surgery: effects of different hydroxyapatite and dematerialized bone matrix on proliferation rate and bone matrix synthesis by human osteoblasts. Biomaterials 16:397–402, 1995.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang, R., S. C. Supowit, G. L. Klein, Z. Lu, M. D. Christensen, R. Lozano, and D. J. Simmons. Rat tail suspension reduces mRNA levels for growth factors and osteopontin and decreases the osteoblastic differentiation of bone marrow stromal cells. J. Bone Miner. Res. 10:415–423, 1995.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Lorella Marinucci
    • 1
  • Stefania Balloni
    • 1
  • Ennio Becchetti
    • 1
  • Giovanni Bistoni
    • 2
  • Edoardo Maria Calvi
    • 3
  • Eleonora Lumare
    • 4
  • Filippo Ederli
    • 5
  • Paola Locci
    • 1
  1. 1.Department of Experimental Medicine and Biochemical SciencesUniversity of PerugiaPerugiaItaly
  2. 2.Department of Dermatology and Plastic SurgeryUniversity La SapienzaRomeItaly
  3. 3.PerugiaItaly
  4. 4.Forensic Medicine InstituteUniversity of PerugiaPerugiaItaly
  5. 5.PerugiaItaly

Personalised recommendations