Annals of Biomedical Engineering

, Volume 38, Issue 3, pp 1111–1118 | Cite as

The Effects of Concentric Ring Electrode Electrical Stimulation on Rat Skin

  • W. Besio
  • V. Sharma
  • J. Spaulding


Surface electrodes are commonly used electrodes clinically, in applications such as functional electrical stimulation for the restoration of motor functions, pain relief, transcutaneous electrical nerve stimulation, electrocardiographic monitoring, defibrillation, surface cardiac pacing, and advanced drug delivery systems. Common to these applications are occasional reports of pain, tissue damage, rash, or burns on the skin at the point where electrodes are placed. In this study, we quantitatively analyzed the effects of acute noninvasive electrical stimulation from concentric ring electrodes (CRE) to determine the maximum safe current limit. We developed a three-dimensional multi-layer model and calculated the temperature profile under the CRE and the corresponding energy density with electrical-thermal coupled field analysis. Infrared thermography was used to measure skin temperature during electrical stimulation to verify the computer simulations. We also performed histological analysis to study cell morphology and characterize any resulting tissue damage. The simulation results are accurate for low energy density distributions. It can also be concluded that as long as the specified energy density applied is kept below 0.92 (A2/cm4·s−1), the maximum temperature will remain within the safe limits. Future work should focus on the effects of the electrode paste.


Noninvasive electrical stimulation Transcutaneous electrical stimulation Electrical-thermal coupled field analysis Infrared thermography 



The authors would like to thank Green Family Chiropractic of Farmerville Louisiana for the use of there infrared thermography system and Dr. Mesut Sahin for rat experimental training and use of his laboratory.


  1. 1.
    Ambler, J. J., D. M. Sado, D. A. Zideman, and C. D. Deakin. The incidence and severity of cutaneous burns following external DC cardioversion. Resuscitation 61:281–288, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Auletta, C. Current in vivo assays for cutaneous toxicity: local and systemic toxicity testing. Basic Clin. Pharmacol. Toxicol. 95:201–208, 2004.CrossRefPubMedGoogle Scholar
  3. 3.
    Balmaseda, Jr., M. T., M. T. Fatehi, S. H. Koozekanani, and J. S. Sheppard. Burns in functional electric stimulation: two case reports. Arch. Phys. Med. Rehabil. 68:452–453, 1987.PubMedGoogle Scholar
  4. 4.
    Besio, W., H. Cao, and P. Zhou. Application of tripolar concentric electrodes and pre-feature selection algorithm for brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 16(2):191–194, 2008.CrossRefPubMedGoogle Scholar
  5. 5.
    Besio, W., K. Koka, R. Aakula, and W. Dai. Tri-polar concentric electrode development for high resolution EEG Laplacian electroencephalography using tri-polar concentric ring electrodes. IEEE Trans. BME 53(5):926–933, 2006.CrossRefGoogle Scholar
  6. 6.
    Besio, W., K. Koka, and A. Cole. Effects of noninvasive transcutaneous electrical stimulation via concentric ring electrodes on pilocarpine-induced status epilepticus in rats. Epilepsia 48(12):2273–2279, 2007.PubMedGoogle Scholar
  7. 7.
    Cowan, S., J. McKenna, E. McCrum-Gardner, M. Johnson, K. Sluka, and D. Walsh. An investigation of the hypoalgesic effects of TENS delivered by a glove electrode. J. Pain 10:694–701, 2009.CrossRefPubMedGoogle Scholar
  8. 8.
    Danielsen, L., M. Gniadecka, H. K. Thomsen, F. Pedersen, S. Strange, K. G. Nielsen, and H. D. Petersen. Skin changes following defibrillation. The effect of high voltage direct current. Forensic Sci. Int. 134:134–141, 2003.CrossRefPubMedGoogle Scholar
  9. 9.
    Davey, K., C. Epstein, M. George, and D. Bohning. Measuring the effects of electrical conductivity of the head on the induced electric field in the brain during magnetic stimulation. Clin. Neurophys. 114(11):2204–2209, 2003.CrossRefGoogle Scholar
  10. 10.
    Fregni, F., S. Thome-Souza, M. Nitsche, S. Freedman, K. Valente, and A. Pascual-Leone. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia 47:335–342, 2006.CrossRefPubMedGoogle Scholar
  11. 11.
    Grossi, E. A., M. A. Parish, M. R. Kralik, L. R. Glassman, R. A. Esposito, G. H. Ribakove, A. C. Galloway, and S. B. Colvin. Direct-current injury from external pacemaker results in tissue electrolysis. Ann. Thorac. Surg. 56:156–157, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Kerber, R., R. Kieso, M. Kienzle, B. Olshansky, A. Waldo, M. Carlson, D. Wilber, A. Aschoff, S. Birger, and F. Charbonnier. Current-based transthoracic defibrillation. Am. J. Cardiol. 78:1113–1118, 1996.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim, Y., and P. H. Schimpf. Electrical behavior of defibrillation and pacing electrodes. Proc. IEEE 84:446–456, 1996.CrossRefGoogle Scholar
  14. 14.
    Kim, Y., J. G. Webster, and W. J. Tompkins. Simulated and experimental studies of temperature elevation around electrosurgical dispersive electrodes. IEEE Trans. Biomed. Eng. 31:681–692, 1984.CrossRefPubMedGoogle Scholar
  15. 15.
    Koka, K., and W. Besio. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. J. Neurosci. Methods 165:216–222, 2007.CrossRefPubMedGoogle Scholar
  16. 16.
    Kowalski, T., J. Silny, and H. Buchner. Current density threshold for the stimulation of neurons in the motor cortex area. Bioelectromagnetics 23(6):421–428, 2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Krasteva, V. T., and S. P. Papazov. Estimation of current density distribution under electrodes for external defibrillation. Biomed. Eng. Online 16:1–7, 2002.Google Scholar
  18. 18.
    Lambert, H., E. De Baetselier, G. Vanalme, and G. D. Mey. Skin burn risk using transcutaneous direct current. Proceedings of IEEE Engineering in Medicine and Biology 17th Annual Conference, 1995, pp. 477–478.Google Scholar
  19. 19.
    Lippmann, M., and W. A. Fields. Burns of the skin caused by a peripheral-nerve stimulator. Anesthesiology 40:82–84, 1974.CrossRefPubMedGoogle Scholar
  20. 20.
    Merrill, D., M. Bikson, and J. Jefferys. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141:171–198, 2005.CrossRefPubMedGoogle Scholar
  21. 21.
    Miranda, P. C., M. Lomarev, and M. Hallett. Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117(7):1623–1629, 2006.CrossRefPubMedGoogle Scholar
  22. 22.
    Moritz, R., and F. C. Henriques. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of skin burns. Am. J. Pathol. 23:695–720, 1947.PubMedGoogle Scholar
  23. 23.
    Oosterom, A. V., and J. Strackee. Computing the lead field of electrodes with axial symmetry. Med. Biol. Eng. Comput. 21:473–481, 1983.CrossRefPubMedGoogle Scholar
  24. 24.
    Overmeyer, K. M., J. A. Pearce, and D. P. DeWitt. Measurements of temperature distributions at electrosurgical dispersive electrode sites. J. Biomech. Eng. 101:66–72, 1979.Google Scholar
  25. 25.
    Pacelat, E., R. Magjarevic, and V. Isgum. Measurement of electrode-tissue interface characteristics during high current transcranial pulse electrical stimulation. Measurement 27:133–143, 2000.CrossRefGoogle Scholar
  26. 26.
    Papazov, S., Z. Kostov, and I. Daskalov. Electrical current distribution under transthoracic defibrillation and pacing electrodes. J. Med. Eng. Technol. 26:22–27, 2002.CrossRefPubMedGoogle Scholar
  27. 27.
    Patriciu, A., K. Yoshida, J. J. Struijk, T. P. DeMonte, M. L. Joy, and H. Stodkilde-Jorgensen. Current density imaging and electrically induced skin burns under surface electrodes. IEEE Trans. Biomed. Eng. 52:2024–2031, 2005.CrossRefPubMedGoogle Scholar
  28. 28.
    Pearce, J. A., L. A. Geddes, J. F. Van Vleet, K. Foster, and J. Allen. Skin burns from electrosurgical current. Med. Instrum. 17:225–231, 1983.PubMedGoogle Scholar
  29. 29.
    Sackeim, H. Convulsant and anticonvulsant properties of ECT towards a focal form of brain stimulation. Clin. Neurosci. Res. 4:39–57, 2004.CrossRefGoogle Scholar
  30. 30.
    Shah, R. N., and J. G. Webster. Burns under electrosurgical dispersive electrodes. Proceedings of the 14th Annual Meeting AAMI, Vol. 20, Las Vagas, NV, 1979, p. 292.Google Scholar
  31. 31.
    Stoner, D. L., J. H. Yoo, R. W. Feldtman, and W. Stanford. Human skin burns induced by defibrillator default current. J. Thorac. Cardiovasc. Surg. 72:157–161, 1976.PubMedGoogle Scholar
  32. 32.
    Takamiya, M., K. Saigusa, N. Nakayashiki, and Y. Aoki. A histological study on the mechanism of epidermal nuclear elongation in electrical and burn injuries. Int. J. Legal Med. 115:152–157, 2001.CrossRefPubMedGoogle Scholar
  33. 33.
    Vedovato, J. W., V. P. Polvora, and D. F. Leonardi. Burns as a complication of the use of diathermy. J. Burn Care Rehabil. 25:120–123, 2004.CrossRefPubMedGoogle Scholar
  34. 34.
    Wiley, J. D., and J. G. Webster. Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans. Biomed. Eng. 29:381–385, 1982.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Electrical, Computer, and Biomedical Engineering DepartmentUniversity of Rhode IslandKingstonUSA
  2. 2.Huntington Medical Research InstitutePasadenaUSA
  3. 3.Biological Services DepartmentLouisiana Tech UniversityRustonUSA

Personalised recommendations