Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 3, pp 1098–1110 | Cite as

Improved Preservation of the Tissue Surrounding Percutaneous Devices by Hyaluronic Acid and Dermatan Sulfate in a Human Skin Explant Model

  • Antonio Peramo
  • Cynthia L. Marcelo
  • Steven A. Goldstein
  • David C. Martin
Article

Abstract

Cellular apoptosis and proliferation was analyzed in an in vitro culture system of organotypic human skin explants in the presence or absence of external fixator pins. The effect on the tissues of a mixture of hyaluronic acid and dermatan sulfate (HA + DS) delivered at the skin–pin interface was also studied. After 2 weeks in culture, skin specimens interfaced with fixator pins showed increased keratinocyte apoptosis and proliferation compared to specimens without fixator pins. Simultaneously, a relative reduction of apoptosis and proliferation was observed in specimens treated with the HA + DS mixture, regardless of fixation pin presence. In addition, the HA + DS mixture appeared to help in the preservation of the epidermal basal membrane. It is concluded that in this in vitro model, fixator pins induce keratinocyte apoptosis and hyperproliferation, which are reduced in the presence of the HA + DS mixture. These methods may be useful for a better maintenance of the soft tissue surrounding percutaneous devices in vivo.

Keywords

Organotypic culture Wound healing Skin biomaterial Implant interface External fixation 

Notes

Acknowledgments

We thank Harald Eberhart, College of Engineering, University of Michigan, for help with the glass lid design. We thank Marta Dzaman, Morphology Core, University of Michigan for advice on specimen sectioning and staining. This report is presented as part of research efforts within an Army Research Office Multidisciplinary University Research Initiative award on Bio-Integrating Structural and Neural Prosthetic Materials and we gratefully acknowledge the funding provided. Support for this work was also provided by the University of Michigan College of Engineering GAP Funding program.

References

  1. 1.
    Ågren, U. M., M. Tammi, M. Ryynänen, and R. Tammi. Developmentally programmed expression of hyaluronan in human skin and its appendages. J. Invest. Dermatol. 109:219–224, 1997.CrossRefPubMedGoogle Scholar
  2. 2.
    Amagai, M., P. J. Koch, T. Nishikawa, and J. R. Stanley. Pemphigus vulgaris antigen (desmoglein 3) is localized in the lower epidermis, the site of blister formation in patients. J. Invest. Dermatol. 106:351–353, 1996.CrossRefPubMedGoogle Scholar
  3. 3.
    Balaz, E. A., and T. C. Laurent. New applications for hyaluronan. In: The Chemistry, Biology and Medical Applications of Hyaluronan and Its Derivatives, edited by T. C. Laurent. Wenner-Gren Symposium, 1998, (72), p. S.325.Google Scholar
  4. 4.
    Bedoni, M., C. Sforza, C. Dolci, and E. Donetti. Proliferation and differentiation biomarkers in normal human breast skin organotypic cultures. J. Dermatol. Sci. 46:139–142, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Blanton, R. A., M. D. Coltrera, A. M. Gown, C. L. Halbert, and J. K. McDougall. Expression of the HPV16 E7 gene generates proliferation in stratified squamous cell cultures which is independent of endogenous p53 levels. Cell Growth Diff. 3:791–802, 1992.PubMedGoogle Scholar
  6. 6.
    Breitkreutz, D., H. J. Stark, N. Mirancea, P. Tomakidi, H. Steinbauer, and N. E. Fusenig. Integrin and basement membrane normalization in mouse grafts of human keratinocytes—implications for epidermal homeostasis. Differentiation 61:195–209, 1997.CrossRefPubMedGoogle Scholar
  7. 7.
    Buntrock, P., K. D. Jentzsch, and G. Heder. Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. I. Quantitative and biochemical studies into formation of granulation tissue. Exp. Pathol. 21:46–53, 1982.PubMedGoogle Scholar
  8. 8.
    Campbell, A. A., L. Song, X. S. Li, B. J. Nelson, C. Bottoni, D. E. Brooks, and E. S. DeJong. Development, characterization, and anti-microbial efficacy of hydroxyapatite-chlorhexidine coatings produced by surface-induced mineralization. J. Biomed. Mater. Res. 53:400–407, 2000.CrossRefPubMedGoogle Scholar
  9. 9.
    Campo, G. M., A. Avenoso, S. Campo, A. D’Ascola, P. Traina, D. Samà, and A. Calatroni. NF-kB and caspases are involved in the hyaluronan and chondroitin-4-sulphate-exerted antioxidant effect in fibroblast cultures exposed to oxidative stress. J. Appl. Toxicol. 28:509–517, 2008.CrossRefPubMedGoogle Scholar
  10. 10.
    Carruthers, J., and A. Carruthers. Hyaluronic acid gel in skin rejuvenation. J. Drugs Dermatol. 5:959–964, 2006.PubMedGoogle Scholar
  11. 11.
    Dechert, T. A., A. E. Ducale, S. I. Ward, and D. R. Yager. Hyaluronan in human acute and chronic dermal wounds. Wound Repair Regen. 14:252–258, 2006.CrossRefPubMedGoogle Scholar
  12. 12.
    Dunphy, J. E., and K. N. Udupa. Chemical and histochemical sequences in the normal healing of wounds. N. Engl. J. Med. 253:847–851, 1955.PubMedCrossRefGoogle Scholar
  13. 13.
    El Ghalbzouri, A., M. F. Jonkman, R. Dijkman, and M. Ponec. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J. Invest. Dermatol. 124:79–86, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Elkayam, O., I. Yaron, I. Shirazi, M. Yaron, and D. Caspi. Serum levels of hyaluronic acid in patients with psoriatic arthritis. Clin. Rheumatol. 19:455–457, 2000.CrossRefPubMedGoogle Scholar
  15. 15.
    Engstrom-Laurent, A., N. Feltelius, R. Hallgren, and A. Wasteson. Raised serum hyaluronate levels in scleroderma: an effect of growth factor induced activation of connective tissue cells? Ann. Rheum. Dis. 44:614–620, 1985.CrossRefPubMedGoogle Scholar
  16. 16.
    Freitas, J. P., P. Filipe, I. Emerit, P. Meunier, C. F. Manso, and F. Guerra Rodrigo. Hyaluronic acid in progressive systemic sclerosis. Dermatology 192:46–49, 1996.CrossRefPubMedGoogle Scholar
  17. 17.
    Gallo, R. L., and M. Bernfield. Proteoglycans and their role in wound repair. In: The Molecular and Cellular Biology of Wound Repair, 2nd edn., Chap. 15, edited by R. F. Clark. New York: Plenum Press, 1996.Google Scholar
  18. 18.
    Gawronska-Kozak, B., M. Bogacki, J. S. Rim, W. T. Monroe, and J. A. Manuel. Scarless skin repair in immunodeficient mice. Wound Repair Regen. 14:265–276, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    Gupta, D., C. H. Tator, and M. S. Shoichet. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27:2370–2379, 2006.CrossRefPubMedGoogle Scholar
  20. 20.
    Hebda, P. A., C. K. Klingbeil, J. A. Abraham, and J. C. Fiddes. Basic fibroblast growth factor stimulation of epidermal wound healing in pigs. J. Invest. Dermatol. 95:626–631, 1990.CrossRefPubMedGoogle Scholar
  21. 21.
    Jia, C., C. He, G. W. Cherry, B. Carbow, W. Meyer-Ingold, D. Bader, and D. C. West. Hyaluronan, heterogeneity, and healing: the effects of ultrapure hyaluronan of defined molecular size on the repair of full-thickness pig skin wounds. Wound Repair Regen. 3:299–310, 1995.CrossRefPubMedGoogle Scholar
  22. 22.
    Kawashima, H., K. Atarashi, M. Hirose, J. Hirose, S. Yamada, K. Sugahara, and M. Miyasaka. Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines. J. Biol. Chem. 277:12921–12930, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Knowles, N. G., Y. Miyashita, M. L. Usui, A. J. Marshall, A. Pirrone, K. D. Hauch, B. D. Ratner, R. A. Underwood, P. Fleckman, and J. E. Olerud. A model for studying epithelial attachment and morphology at the interface between skin and percutaneous devices. J. Biomed. Mater. Res. A 74:482–488, 2005.PubMedGoogle Scholar
  24. 24.
    Koshiishi, I., E. Horikoshi, and T. Imanari. Quantification of hyaluronan and chondroitin/dermatan sulfates in the tissue sections on glass slides. Anal. Biochem. 267:222–226, 1999.CrossRefPubMedGoogle Scholar
  25. 25.
    Kubo, M., H. Ihn, A. Matsukawa, K. Kikuchi, and K. Tamaki. Dermatomyositis with elevated serum hyaluronate. Clin. Exp. Dermatol. 24:275–278, 1999.CrossRefPubMedGoogle Scholar
  26. 26.
    Longaker, M. T., E. S. Chiu, N. S. Adzick, M. Stern, M. R. Harrison, and R. Stern. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann. Surg. 213:292–296, 1991.CrossRefPubMedGoogle Scholar
  27. 27.
    Lundgren, D., and R. Axelsson. Soft-tissue-anchored percutaneous device for long-term intracorporeal access. J. Invest. Surg. 2:17–27, 1989.CrossRefPubMedGoogle Scholar
  28. 28.
    Lundin, A., A. Engstrom-Laurent, R. Hallgren, and G. Michaelsson. Circulating hyaluronate in psoriasis. Br. J. Dermatol. 112:663–671, 1985.CrossRefPubMedGoogle Scholar
  29. 29.
    Lundin, A., A. Engstrom-Laurent, G. Michaelsson, and A. Tengblad. High levels of hyaluronate in suction blister fluid from active psoriatic lesions. Br. J. Dermatol. 116:335–340, 1987.CrossRefPubMedGoogle Scholar
  30. 30.
    Maas-Szabowski, N., H. J. Stark, and N. E. Fusenig. Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced keratinocyte growth factor expression in resting fibroblasts. J. Invest. Dermatol. 114:1075–1084, 2000.CrossRefPubMedGoogle Scholar
  31. 31.
    Mahan, J., D. Seligson, S. L. Henry, P. Hynes, and J. Dobbins. Factors in pin tract infections. Orthopedics 14:305–308, 1991.PubMedGoogle Scholar
  32. 32.
    Martikainen, A. L., M. Tammi, and R. Tammi. Proteoglycans synthesized by adult human epidermis in whole skin organ culture. J. Invest. Dermatol. 99:623–628, 1992.CrossRefPubMedGoogle Scholar
  33. 33.
    McGee, G. S., J. M. Davidson, A. Buckley, A. Sommer, S. C. Woodward, A. M. Aquino, R. Barbour, and A. A. Demetriou. Recombinant basic fibroblast growth factor accelerates wound healing. J. Surg. Res. 45:145–153, 1988.CrossRefPubMedGoogle Scholar
  34. 34.
    McKee, C. M., M. B. Penno, M. Cowman, M. D. Burdick, R. M. Strieter, C. Bao, and P. W. Noble. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J. Clin. Invest. 98:2403–2413, 1996.CrossRefPubMedGoogle Scholar
  35. 35.
    Pasonen-Seppanen, S., S. Karvinen, K. Torronen, J. M. Hyttinen, T. Jokela, M. J. Lammi, M. I. Tammi, and R. Tammi. EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: correlations with epidermal proliferation and differentiation. J. Invest. Dermatol. 120:1038–1044, 2003.CrossRefPubMedGoogle Scholar
  36. 36.
    Passi, A., P. Sadeghi, H. Kawamura, S. Anand, N. Sato, L. E. White, V. C. Hascall, and E. V. Maytin. Hyaluronan suppresses epidermal differentiation in organotypic cultures of rat keratinocytes. Exp. Cell Res. 296:123–134, 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    Passos, C. O., C. C. Werneck, G. R. Onofre, E. A. Pagani, A. L. Filgueira, and L. C. Silva. Comparative biochemistry of human skin: glycosaminoglycans from different body sites in normal subjects and in patients with localized scleroderma. J. Eur. Acad. Dermatol. Venereol. 17:14–19, 2003.CrossRefPubMedGoogle Scholar
  38. 38.
    Penc, S. F., B. Pomahac, T. Winkler, R. A. Dorschner, E. Eriksson, M. Herndon, and R. L. Gallo. Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function. J. Biol. Chem. 273:28116–28121, 1998.CrossRefPubMedGoogle Scholar
  39. 39.
    Pendergrass, C. J., A. E. Goodship, and G. W. Blunn. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses. Biomaterials 27:4183–4191, 2006.CrossRefGoogle Scholar
  40. 40.
    Penneys, N. S., J. E. Fulton, Jr., G. D. Weinstein, and P. Frost. Location of proliferating cells in human epidermis. Arch. Dermatol. 101:323–327, 1970.CrossRefPubMedGoogle Scholar
  41. 41.
    Peramo, A., C. L. Marcelo, S. A. Goldstein, and D. C. Martin. Novel organotypic cultures of human skin explants with an implant-tissue biomaterial interface. Ann. Biomed. Eng. 37:401–409, 2009.CrossRefPubMedGoogle Scholar
  42. 42.
    Pickup, J. C., F. Hussain, N. D. Evans, and N. Sachedina. In vivo glucose monitoring: the clinical reality and the promise. Biosens. Bioelectron. 20:1897–1902, 2005 (Review).CrossRefPubMedGoogle Scholar
  43. 43.
    Resau, J. H., K. Sakamoto, J. R. Cottrell, E. A. Hudson, and S. J. Meltzer. Explant organ culture: a review. Cytotechnology 7:137–149, 1991.CrossRefPubMedGoogle Scholar
  44. 44.
    Savage, Jr., C. R., and S. Cohen. Proliferation of corneal epithelium induced by epidermal growth factor. Exp. Eye Res. 15:361–366, 1973.CrossRefPubMedGoogle Scholar
  45. 45.
    Shafritz, T. A., L. C. Rosenberg, and I. V. Yannas. Specific effects of glycosaminoglycans in an analog of extracellular matrix that delays wound contraction and induces regeneration. Wound Repair Regen. 2:270–276, 1994.CrossRefPubMedGoogle Scholar
  46. 46.
    Sivan, V., M. C. Vozenin-Brotons, Y. Tricaud, J. L. Lefaix, J. M. Cosset, B. Dubray, and M. T. Martin. Altered proliferation and differentiation of human epidermis in cases of skin fibrosis after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 53:385–393, 2002.PubMedGoogle Scholar
  47. 47.
    Sondergaard, K., L. Heickendorff, L. Risteli, J. Risteli, H. Zachariae, K. Stengaard-Pedersen, and B. Deleuran. Increased levels of type I and III collagen and hyaluronan in scleroderma skin. Br. J. Dermatol. 136:47–53, 1997.CrossRefPubMedGoogle Scholar
  48. 48.
    Stern, R. Devising a pathway for hyaluronan catabolism: Are we there yet? Glycobiology 13:105R–115R, 2003.CrossRefPubMedGoogle Scholar
  49. 49.
    Stoscheck, C. M., L. B. Nanney, and L. E. King, Jr. Quantitative determination of EGF-R during epidermal wound healing. J. Invest. Dermatol. 99:645–649, 1992.CrossRefPubMedGoogle Scholar
  50. 50.
    Svensjo, T., B. Pomahac, F. Yao, J. Slama, and E. Eriksson. Accelerated healing of full-thickness skin wounds in a wet environment. Plast. Reconstr. Surg. 106:602–612, 2000.CrossRefPubMedGoogle Scholar
  51. 51.
    Tammi, M. I., A. J. Day, and E. A. Turley. Hyaluronan and homeostasis: a balancing act. J. Biol. Chem. 277:4581–4584, 2002.CrossRefPubMedGoogle Scholar
  52. 52.
    Trautmann, A., F. Altznauer, M. Akdis, H. U. Simon, R. Disch, E. B. Brocker, K. Blaser, and C. A. Akdis. The differential fate of cadherins during T-cell-induced keratinocyte apoptosis leads to spongiosis in eczematous dermatitis. J. Invest. Dermatol. 117:927–934, 2001.CrossRefPubMedGoogle Scholar
  53. 53.
    Tsuboi, R., and D. B. Rifkin. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. J. Exp. Med. 172:245–251, 1990.CrossRefPubMedGoogle Scholar
  54. 54.
    Varani, J., S. E. G. Fligiel, L. Schuger, P. Perone, D. R. Inman, C. E. M. Griffiths, and J. J. Voorhees. Effects of all-trans retinoic acid and Ca2+ on human skin in organ culture. Am. J. Pathol. 142:189–198, 1993.PubMedGoogle Scholar
  55. 55.
    Voinchet, V., P. Vasseur, and J. Kern. Efficacy and safety of hyaluronic acid in the management of acute wounds. Am. J. Clin. Dermatol. 7:353–357, 2006.CrossRefPubMedGoogle Scholar
  56. 56.
    Von Recum, A. F. Applications and failure modes of percutaneous devices: a review. J. Biomed. Mater. Res. 18:323–336, 1984.CrossRefGoogle Scholar
  57. 57.
    Wang, C., M. Tammi, and R. Tammi. Distribution of hyaluronan and its CD44 receptor in the epithelia of human skin appendages. Histochemistry 98:105–112, 1992.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang, T. W., H. C. Wu, Y. C. Huang, J. S. Sun, and F. H. Lin. Biomimetic bilayered gelatin-chondroitin 6 sulfate-hyaluronic acid biopolymer as the scaffold for skin equivalent tissue engineering. Artif. Organs 30:141–149, 2006.CrossRefPubMedGoogle Scholar
  59. 59.
    Welss, T., D. A. Basketter, and K. R. Schröder. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol. In Vitro 8:231–243, 2004.CrossRefGoogle Scholar
  60. 60.
    Winter, G. D. Transcutaneous implants: reactions of the skin-implant interface. J. Biomed. Mater. Res. 8:99–113, 1974.CrossRefPubMedGoogle Scholar
  61. 61.
    Xu, W., D. H. Xu, and A. D. Crocombe. Three-dimensional finite element stress and strain analysis of a transfemoral osseointegration implant. Proc. Inst. Mech. Eng. [H]: J. Eng. Med. 220:661–670, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Antonio Peramo
    • 1
    • 2
  • Cynthia L. Marcelo
    • 2
  • Steven A. Goldstein
    • 4
    • 5
  • David C. Martin
    • 1
    • 3
    • 4
  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of SurgeryUniversity of MichiganAnn ArborUSA
  3. 3.Macromolecular Science and Engineering CenterUniversity of MichiganAnn ArborUSA
  4. 4.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  5. 5.Department of Orthopedic SurgeryUniversity of MichiganAnn ArborUSA

Personalised recommendations