Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 4, pp 1511–1529 | Cite as

Falling-Edge, Variable Threshold (FEVT) Method for the Automated Detection of Gastric Slow Wave Events in High-Resolution Serosal Electrode Recordings

  • Jonathan C. EricksonEmail author
  • Gregory O’Grady
  • Peng Du
  • Chibuike Obioha
  • Wenlian Qiao
  • William O. Richards
  • L. Alan Bradshaw
  • Andrew J. Pullan
  • Leo K. Cheng
Article

Abstract

High resolution (HR) multi-electrode mapping is increasingly being used to evaluate gastrointestinal slow wave behaviors. To create the HR activation time (AT) maps from gastric serosal electrode recordings that quantify slow wave propagation, it is first necessary to identify the AT of each individual slow wave event. Identifying these ATs has been a time consuming task, because there has previously been no reliable automated detection method. We have developed an automated AT detection method termed falling-edge, variable threshold (FEVT) detection. It computes a detection signal transform to accentuate the high ‘energy’ content of the falling edges in the serosal recording, and uses a running median estimator of the noise to set the time-varying detection threshold. The FEVT method was optimized, validated, and compared to other potential algorithms using in vivo HR recordings from a porcine model. FEVT properly detects ATs in a wide range of waveforms, making its performance substantially superior to the other methods, especially for low signal-to-noise ratio (SNR) recordings. The algorithm offered a substantial time savings (>100 times) over manual-marking whilst achieving a highly satisfactory sensitivity (0.92) and positive-prediction value (0.89).

Keywords

Gastric electrical activity Gastric slow wave Activation time map High-resolution mapping Energy operator 

Notes

Acknowledgments

The authors gratefully acknowledge the assistance of the animal care facilities at their respective Universities, including Linley Nisbett for her technical skills. This work was supported by NIH Grants R01 DK58197, RO1 DK58697-02, RO1 DK64775, and grants from the NZ Society of Gastroenterology and NZ Health Research Council.

References

  1. 1.
    Bradshaw, L. A., A. Irimia, J. A. Sims, M. R. Gallucci, R. L. Palmer, and W. O. Richards. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterol. Motil. 18:619–631, 2006.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen, J., Z. Lin, J. Pan, and R. McCallum. Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis. Dig. Dis. Sci. 41:1538–1545, 1996.CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng, L. K., G. O’Grady, P. Du, J. U. Egbuji, J. A. Windsor, and A. J. Pullan. Gastrointestinal system. Wiley Interdiscip. Rev.: Syst. Biol. Med., 2009. doi: 10.1002/wsbm.19.
  4. 4.
    Crenner, F., A. Lambert, F. Angel, J. Schang, and J. Grenier. Analogue automated analysis of small intestinal electromyogram. Med. Biol. Eng. Comput. 20:151–158, 1982.CrossRefPubMedGoogle Scholar
  5. 5.
    Du, P., G. O’Grady, J. U. Egbuji, W. J. Lammers, D. Budgett, P. Nielsen, J. A. W. A. J. Pullan, and L. K. Cheng. High resolution mapping of in-vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methods and validation. Ann. Biomed. Eng. 37:839–846, 2009.CrossRefPubMedGoogle Scholar
  6. 6.
    Du, P., G. O’Grady, J. A. Windsor, L. K. Cheng, and A. J. Pullan. A tissue framework for simulating the effects of gastric electrical stimulation and in-vivo validation. IEEE Trans. Biomed. Eng. 56:2755–2761, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Du, P., W. Qiao, G. O’Grady, J. U. Egbuji, W. Lammers, L. K. Cheng, and A. J. Pullan. Automated detection of gastric slow wave events and estimation of propagation velocity vector fields from serosal high-resolution mapping. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:2527–2530, 2009.Google Scholar
  8. 8.
    Gardner, P. I., P. C. Ursell, J. J. Fenoglio, and A. L. Wit. Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 72:596–611, 1985.PubMedGoogle Scholar
  9. 9.
    Hodge, V. and J. Austin. A survey of outlier detection methodologies. Artif. Intell. Rev. 22:85–126, 2004.CrossRefGoogle Scholar
  10. 10.
    Huizinga, J. D. and W. J. Lammers. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296:1–8, 2009.CrossRefGoogle Scholar
  11. 11.
    Kaiser, J. On a simple algorithm to calculate the energy of a signal. In: Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing, edited by Y. Smith, Albuquerque, April 1990, pp. 381–384.Google Scholar
  12. 12.
    Kaiser, J. Some useful properties of Teager’s energy operators. In: 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3. ICASSP-93, 1993.Google Scholar
  13. 13.
    Kim, S. and J. McNames. Automatic spike detection based on adaptive template matching for extracellular neural recordings. J. Neurosci. Methods 165:165–174, 2007.CrossRefPubMedGoogle Scholar
  14. 14.
    Kohler, B., C. Hennig, and R. Orglmeister. The principles of software QRS detection. In: IEEE Engineering in Medicine and Biology, Jan/Feb 2002, pp. 42–57.Google Scholar
  15. 15.
    Lammers, W. Smoothmap v3.0.3. http://www.Smoothmap.org.
  16. 16.
    Lammers, W. J., B. Michiels, J. Voeten, L. Ver Donck, and J. A. Schuurkes. Mapping slow waves and spikes in chronically instrumented conscious dogs: automated on-line electrogram analysis. Med. Biol. Eng. Comput. 46:121–129, 2008.CrossRefPubMedGoogle Scholar
  17. 17.
    Lammers, W. J., B. Stephen, K. Arafat, and G. W. Manefield. High resolution electrical mapping in the gastrointestinal system: initial results. Neurogastroenterol. Motil. 8:207–216, 1996.PubMedGoogle Scholar
  18. 18.
    Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611, 2008.CrossRefPubMedGoogle Scholar
  19. 19.
    Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am. J. Physiol. Gastrointest. Liver Physiol. 296:1200–1210, 2009.CrossRefGoogle Scholar
  20. 20.
    Lewicki, M. A review of methods for spike sorting: the detection and classification of neural action potentials. Network: Comput. Neural Syst. 9:R53–R78, 1998.CrossRefGoogle Scholar
  21. 21.
    Maragos, P. and A. Potamianos. Higher order differential energy operators. IEEE Signal Process. Lett. 2:152–154, 1995.CrossRefGoogle Scholar
  22. 22.
    McAdams, E. Bioelectrodes. In: Encyclopedia of Medical Devices and Instrumentation (2nd ed.), edited by J. G. Webster. New York: Wiley, 2006, pp. 120–166.Google Scholar
  23. 23.
    Mukhopadhyay, S. and G. C. Ray. A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans. Biomed. Eng. 45:180–187, 1998.CrossRefPubMedGoogle Scholar
  24. 24.
    Nenadic, Z. and J. W. Burdick. Spike detection using the continuous wavelet transform. IEEE Trans. Biomed. Eng. 52:74–87, 2005.CrossRefPubMedGoogle Scholar
  25. 25.
    O’Grady, G., P. Du, J. Egbuji, W. Lammers, D. Budgett, P. Nielsen, J. Windsor, A. Pullan, and L. Cheng. High-resolution mapping of human gastric slow wave activity: methods and first results. Gastroenterology 136:A484, 2009.Google Scholar
  26. 26.
    O’Grady, G., P. Du, J. U. Egbuji, et al. A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg. Endosc. 23:2842–2848, 2009.CrossRefGoogle Scholar
  27. 27.
    Postaire, J., N. Van Houtte, and G. Devroede. A computer system for quantitative analysis of gastrointestinal signals. Comput. Biol. Med. 9:295, 1979.CrossRefPubMedGoogle Scholar
  28. 28.
    Pousse, A., C. Mendel, J. Vial, and J. Grenier. Computer program for intestinal basic electrical rhythm patterns analysis. Pflugers Arch. Eur. J. Physiol. 376:259–262, 1978.CrossRefGoogle Scholar
  29. 29.
    Richards, W. O., C. L. Garrard, S. H. Allos, L. A. Bradshaw, D. J. Staton, and J. P. Wikswo. Noninvasive diagnosis of mesenteric ischemia using a SQUID magnetometer. Ann. Surg. 221:696–704, 1995.CrossRefPubMedGoogle Scholar
  30. 30.
    Sezan, M. I. A peak detection algorithm and its application to histogram-based image data reduction. Comput. Vis. Graph. Image Process. 49:36–51, 1990.CrossRefGoogle Scholar
  31. 31.
    Shenasa, M., G. Hindricks, M. Borggrefe, and G. Breithardt. Cardiac Mapping. Oxford, UK: Blackwell Publishing Ltd, 2009.Google Scholar
  32. 32.
    Ver Donck, L., W. J. Lammers, B. Moreaux, D. Smets, J. Voeten, J. Vekemans, J. A. Schuurkes, and B. Coulie. Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings. Med. Biol. Eng. Comput. 44:170–178, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Jonathan C. Erickson
    • 1
    • 5
    Email author
  • Gregory O’Grady
    • 2
  • Peng Du
    • 2
  • Chibuike Obioha
    • 3
  • Wenlian Qiao
    • 2
  • William O. Richards
    • 4
  • L. Alan Bradshaw
    • 1
    • 3
  • Andrew J. Pullan
    • 2
    • 3
  • Leo K. Cheng
    • 2
  1. 1.Department of PhysicsVanderbilt UniversityNashvilleUSA
  2. 2.Auckland Bioengineering InstituteThe University of AucklandAucklandNew Zealand
  3. 3.Department of SurgeryVanderbilt University School of MedicineNashvilleUSA
  4. 4.University of South AlabamaMobileUSA
  5. 5.Department of Physics-EngineeringWashington and Lee UniversityLexingtonUSA

Personalised recommendations