Annals of Biomedical Engineering

, Volume 38, Issue 2, pp 269–279 | Cite as

A Model of the Lower Limb for Analysis of Human Movement

  • Edith M. Arnold
  • Samuel R. Ward
  • Richard L. Lieber
  • Scott L. DelpEmail author


Computer models that estimate the force generation capacity of lower limb muscles have become widely used to simulate the effects of musculoskeletal surgeries and create dynamic simulations of movement. Previous lower limb models are based on severely limited data describing limb muscle architecture (i.e., muscle fiber lengths, pennation angles, and physiological cross-sectional areas). Here, we describe a new model of the lower limb based on data that quantifies the muscle architecture of 21 cadavers. The model includes geometric representations of the bones, kinematic descriptions of the joints, and Hill-type models of 44 muscle–tendon compartments. The model allows calculation of muscle–tendon lengths and moment arms over a wide range of body positions. The model also allows detailed examination of the force and moment generation capacities of muscles about the ankle, knee, and hip and is freely available at


Lower extremity Hill-type model Muscle architecture Maximum isometric moment Muscle strength 



We thank Carolyn Eng, Trevor Kingsbury, Kristin Lieber, Jaqueline Braun, Laura Smallwood, and Taylor Winters and the Anatomical Services Department at the University of California San Diego for their work collecting this cadaver data. Funding for this work was provided by the National Institutes of Health Grants HD048501, HD050837, EB006735, U54 GM072970 and a Stanford Bio-X Graduate Student Fellowship.


  1. 1.
    Anderson, D. E., M. L. Madigan, and M. A. Nussbaum. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40:3105–3113, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Arnold, A. S., D. J. Asakawa, and S. L. Delp. Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy? Gait Posture 11:181–190, 2000.CrossRefPubMedGoogle Scholar
  3. 3.
    Arnold, A. S., S. S. Blemker, and S. L. Delp. Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait. Ann. Biomed. Eng. 29:263–274, 2001.CrossRefPubMedGoogle Scholar
  4. 4.
    Arnold, A. S., S. Salinas, D. J. Asakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5:108–119, 2000.CrossRefPubMedGoogle Scholar
  5. 5.
    Blemker, S. S., and S. L. Delp. Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. J. Biomech. 39:1383–1391, 2006.CrossRefPubMedGoogle Scholar
  6. 6.
    Brand, R. A., R. D. Crowninshield, C. E. Wittstock, D. R. Pedersen, C. R. Clark, and F. M. van Krieken. A model of lower extremity muscular anatomy. J. Biomech. Eng. 104:304–310, 1982.CrossRefPubMedGoogle Scholar
  7. 7.
    Buford, Jr., W. L., F. M. Ivey, Jr., J. D. Malone, R. M. Patterson, G. L. Peare, D. K. Nguyen, and A. A. Stewart. Muscle balance at the knee–moment arms for the normal knee and the ACL-minus knee. IEEE Trans. Rehabil. Eng. 5:367–379, 1997.CrossRefPubMedGoogle Scholar
  8. 8.
    Cahalan, T. D., M. E. Johnson, S. Liu, and E. Y. Chao. Quantitative measurements of hip strength in different age groups. Clin. Orthop. Relat. Res. 246:136–145, 1989.PubMedGoogle Scholar
  9. 9.
    Crowninshield, R. D., and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14:793–801, 1981.CrossRefPubMedGoogle Scholar
  10. 10.
    Delp, S. L. Surgery Simulation: A Computer Graphics System to Analyze and Design Musculoskeletal Reconstructions of the Lower Limb. Ph.D., Department of Mechanical Engineering. Stanford, CA: Stanford University, 1990.Google Scholar
  11. 11.
    Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.CrossRefPubMedGoogle Scholar
  12. 12.
    Delp, S. L., and J. P. Loan. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25:21–34, 1995.CrossRefPubMedGoogle Scholar
  13. 13.
    Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.CrossRefPubMedGoogle Scholar
  14. 14.
    Delp, S. L., D. A. Ringwelski, and N. C. Carroll. Transfer of the rectus femoris: effects of transfer site on moment arms about the knee and hip. J. Biomech. 27:1201–1211, 1994.CrossRefPubMedGoogle Scholar
  15. 15.
    Friederich, J. A., and R. A. Brand. Muscle fiber architecture in the human lower limb. J. Biomech. 23:91–95, 1990.CrossRefPubMedGoogle Scholar
  16. 16.
    Fukunaga, T., R. R. Roy, F. G. Shellock, J. A. Hodgson, and V. R. Edgerton. Specific tension of human plantar flexors and dorsiflexors. J. Appl. Physiol. 80:158–165, 1996.PubMedGoogle Scholar
  17. 17.
    Gordon, C. C., T. Churchill, C. E. Clauser, B. Cradtmillser, J. T. McConville, I. Tebbets, and R. A. Walker. 1988 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics. Natick, MA: United States Army Natick Research, Development, and Engineering Center, 1989.Google Scholar
  18. 18.
    Grood, E. S., W. J. Suntay, F. R. Noyes, and D. L. Butler. Biomechanics of the knee-extension exercise. Effect of cutting the anterior cruciate ligament. J. Bone Joint Surg. Am. 66:725–734, 1984.PubMedGoogle Scholar
  19. 19.
    Herzog, W., E. Hasler, and S. K. Abrahamse. A comparison of knee extensor strength curves obtained theoretically and experimentally. Med. Sci. Sports Exerc. 23:108–114, 1991.PubMedGoogle Scholar
  20. 20.
    Horsman, M. D. K. The Twente Lower Extremity Model: Consistent Dynamic Simulation of the Human Locomotor Apparatus. Ph.D., Department of Engineering Technology. Enschede, The Netherlands: University of Twente, 2007.Google Scholar
  21. 21.
    Horsman, M. D. K., H. F. J. M. Koopman, F. C. T. van der Helm, L. P. Prose, and H. E. J. Veeger. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22:239–247, 2007.CrossRefGoogle Scholar
  22. 22.
    Inman, V. T. The Joints of the Ankle. Baltimore: Williams & Wilkins, 1976.Google Scholar
  23. 23.
    Inman, V. T., H. J. Ralston, and F. Todd. Human Walking. Baltimore: Williams & Wilkins, 1981.Google Scholar
  24. 24.
    Klein, C. S., C. L. Rice, and G. D. Marsh. Normalized force, activation, and coactivation in the arm muscles of young and old men. J. Appl. Physiol. 91:1341–1349, 2001.PubMedGoogle Scholar
  25. 25.
    Lexell, J., C. C. Taylor, and M. Sjostrom. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 84:275–294, 1988.CrossRefPubMedGoogle Scholar
  26. 26.
    Lieber, R. L., and J. Friden. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666, 2000.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu, M. Q., F. C. Anderson, M. G. Pandy, and S. L. Delp. Muscles that support the body also modulate forward progression during walking. J. Biomech. 39:2623–2630, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Lu, T.-W., J. J. O’Connor, S. J. G. Taylor, and P. S. Walker. Validation of a lower limb model with in vivo femoral forces telemetered from two subjects. J. Biomech. 31:63–69, 1998.CrossRefPubMedGoogle Scholar
  29. 29.
    Marsh, E., D. Sale, A. J. McComas, and J. Quinlan. Influence of joint position on ankle dorsiflexion in humans. J. Appl. Physiol. 51:160–167, 1981.PubMedGoogle Scholar
  30. 30.
    Morse, C. I., J. M. Thom, K. M. Birch, and M. V. Narici. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol. Scand. 183:291–298, 2005.CrossRefPubMedGoogle Scholar
  31. 31.
    Murray, M. P., G. M. Gardner, L. A. Mollinger, and S. B. Sepic. Strength of isometric and isokinetic contractions: knee muscles of men aged 20 to 86. Phys. Ther. 60:412–419, 1980.PubMedGoogle Scholar
  32. 32.
    Neptune, R. R., S. A. Kautz, and F. E. Zajac. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34:1387–1398, 2001.CrossRefPubMedGoogle Scholar
  33. 33.
    Olson, V. L., G. L. Smidt, and R. C. Johnston. The maximum torque generated by the eccentric, isometric, and concentric contractions of the hip abductor muscles. Phys. Ther. 52:149–158, 1972.PubMedGoogle Scholar
  34. 34.
    Piazza, S. J., and S. L. Delp. Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123:599–606, 2001.CrossRefPubMedGoogle Scholar
  35. 35.
    Powell, P. L., R. R. Roy, P. Kanim, M. A. Bello, and V. R. Edgerton. Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J. Appl. Physiol. 57:1715–1721, 1984.PubMedGoogle Scholar
  36. 36.
    Raasch, C. C., F. E. Zajac, B. Ma, and W. S. Levine. Muscle coordination of maximum-speed pedaling. J. Biomech. 30:595–602, 1997.CrossRefPubMedGoogle Scholar
  37. 37.
    Riener, R., and T. Edrich. Identification of passive elastic joint moments in the lower extremities. J. Biomech. 32:539–544, 1999.CrossRefPubMedGoogle Scholar
  38. 38.
    Sale, D., J. Quinlan, E. Marsh, A. J. McComas, and A. Y. Belanger. Influence of joint position on ankle plantarflexion in humans. J. Appl. Physiol. 52:1636–1642, 1982.PubMedGoogle Scholar
  39. 39.
    Seireg, A., and R. J. Arvikar. A mathematical model for evaluation of forces in lower extremities of the musculo-skeletal system. J. Biomech. 6:313–326, 1973.CrossRefPubMedGoogle Scholar
  40. 40.
    Spoor, C. W., and J. L. van Leeuwen. Knee muscle moment arms from MRI and from tendon travel. J. Biomech. 25:201–206, 1992.CrossRefPubMedGoogle Scholar
  41. 41.
    van den Bogert, A. J., K. G. Gerritsen, and G. K. Cole. Human muscle modelling from a user’s perspective. J. Electromyogr. Kinesiol. 8:119–124, 1998.CrossRefPubMedGoogle Scholar
  42. 42.
    van Eijden, T. M., W. A. Weijs, E. Kouwenhoven, and J. Verburg. Forces acting on the patella during maximal voluntary contraction of the quadriceps femoris muscle at different knee flexion/extension angles. Acta Anat (Basel) 129:310–314, 1987.CrossRefGoogle Scholar
  43. 43.
    Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21:965–974, 1988.CrossRefPubMedGoogle Scholar
  44. 44.
    Ward, S. R., C. M. Eng, L. H. Smallwood, and R. L. Lieber. Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res. 467:1074–1082, 2009.CrossRefPubMedGoogle Scholar
  45. 45.
    Waters, R. L., J. Perry, J. M. McDaniels, and K. House. The relative strength of the hamstrings during hip extension. J. Bone Joint Surg. Am. 56:1592–1597, 1974.PubMedGoogle Scholar
  46. 46.
    Wickiewicz, T. L., R. R. Roy, P. L. Powell, and V. R. Edgerton. Muscle architecture of the human lower limb. Clin. Orthop. 179:275–283, 1983.PubMedGoogle Scholar
  47. 47.
    Young, A., M. Stokes, and M. Crowe. Size and strength of the quadriceps muscles of old and young women. Eur. J. Clin. Invest. 14:282–287, 1984.CrossRefPubMedGoogle Scholar
  48. 48.
    Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.PubMedGoogle Scholar
  49. 49.
    Zajac, F. E. Muscle coordination of movement: a perspective. J. Biomech. 26(Suppl 1):109–124, 1993.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Edith M. Arnold
    • 1
  • Samuel R. Ward
    • 3
  • Richard L. Lieber
    • 4
  • Scott L. Delp
    • 1
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of BioengineeringStanford UniversityStanfordUSA
  3. 3.Departments of Orthopaedic Surgery, Radiology, and BioengineeringUniversity of California, San DiegoSan DiegoUSA
  4. 4.Departments of Orthopaedic Surgery and BioengineeringUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations