Annals of Biomedical Engineering

, Volume 38, Issue 1, pp 88–99 | Cite as

A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents

  • Peter Mortier
  • Gerhard A. Holzapfel
  • Matthieu De Beule
  • Denis Van Loo
  • Yves Taeymans
  • Patrick Segers
  • Pascal Verdonck
  • Benedict Verhegghe
Article

Abstract

The introduction of drug-eluting stents (DES) has reduced the occurrence of restenosis in coronary arteries. However, restenosis remains a problem in stented coronary bifurcations. This study investigates and compares three different second generation DESs when being implanted in the curved main branch of a coronary bifurcation with the aim of providing better insights into the related changes of the mechanical environment. The 3D bifurcation model is based on patient-specific angiographic data that accurately reproduce the in vivo curvatures of the vessel segments. The layered structure of the arterial wall and its anisotropic mechanical behavior are taken into account by applying a novel algorithm to define the fiber orientations. An innovative simulation strategy considering the insertion of a folded balloon catheter over a guide wire is proposed in order to position the stents within the curved vessel. Straightening occurs after implantation of all stents investigated. The resulting distributions of the wall stresses are strongly dependent on the stent design. Using a parametric modeling approach, two design modifications, which reduce the predicted maximum values of the wall stress, are proposed and analyzed.

Keywords

Finite element analysis Patient-specific bifurcation model Insertion Drug-eluting stents 

Notes

Acknowledgment

First author’s research is supported by a BOF-Grant (01D22606) from Ghent University.

References

  1. 1.
    Colombo, A., E. Bramucci, S. Saccà, R. Violini, C. Lettieri, R. Zanini, I. Sheiban, L. Paloscia, E. Grube, J. Schofer, L. Bolognese, M. Orlandi, G. Niccoli, A. Latib, and F. Airoldi. Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) Study. Circulation 119:71–78, 2009.CrossRefGoogle Scholar
  2. 2.
    De Beule, M. Finite Element Stent Design. PhD thesis, Ghent University, B, 2008.Google Scholar
  3. 3.
    De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41:383–389, 2008.CrossRefGoogle Scholar
  4. 4.
    Deplano, V., C. Bertolotti, and P. Barragan. Three-dimensional numerical simulations of physiological flows in a stented coronary bifurcation. Med. Biol. Eng. Comput. 42:650–659, 2004.CrossRefGoogle Scholar
  5. 5.
    Early, M., C. Lally, P. J. Prendergast, and D. J. Kelly. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput. Methods Biomech. Biomed. Eng. 12:25–33, 2009.PubMedGoogle Scholar
  6. 6.
    Edelman, E. R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81:4E–6E, 1998.Google Scholar
  7. 7.
    Fluent Inc. Gambit Version 2.3 User’s Guide. Lebanon, New Hampshire, 2006.Google Scholar
  8. 8.
    Gorman, S. P., D. S. Jones, M. C. Bonner, M. Akay, and P. F. Keane. Mechanical performance of polyurethane ureteral stents in vitro and ex vivo. Biomaterials 18:1379–1383, 1997.CrossRefGoogle Scholar
  9. 9.
    Gyöngyösi, M., P. Yang, A. Khorsand, and D. Glogar. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. Austrian Wiktor Stent Study Group and European Paragon Stent Investigators. J. Am. Coll. Cardiol. 35:1580–1589, 2000.CrossRefGoogle Scholar
  10. 10.
    Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: John Wiley & Sons, 2000.Google Scholar
  11. 11.
    Holzapfel, G. A., and R. W. Ogden, editors. Biomechanical Modelling at the Molecular, Cellular and Tissue Levels. Wien, New York: Springer-Verlag, 2009.Google Scholar
  12. 12.
    Holzapfel, G. A., and R. W. Ogden, editors. Mechanics of Biological Tissue. Heidelberg: Springer-Verlag, 2006.Google Scholar
  13. 13.
    Holzapfel, G. A., and R. W. Ogden. On planar biaxial tests for anisotropic nonlinearly elasitc solids. A continuum mechanical framework. Math. Mech. Solids, 2008. doi: 10.1177/1081286507084411.
  14. 14.
    Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–2058, 2005.CrossRefGoogle Scholar
  15. 15.
    Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent design. J. Biomech. Eng. 127:166–180, 2005.CrossRefGoogle Scholar
  16. 16.
    Holzapfel, G. A., M. Stadler, and C. A. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767, 2002.CrossRefGoogle Scholar
  17. 17.
    Holzapfel, G. A., and H. W. Weizsäcker. Biomechanical behavior of the arterial wall and its numerical characterization. Comp. Biol. Med. 28:377–392, 1998.CrossRefGoogle Scholar
  18. 18.
    Iakovou, I., L. Ge, and A. Colombo. Contemporary stent treatment of coronary bifurcations. J. Am. Coll. Cardiol. 46:1446–1455, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35:1857–1869, 2007.CrossRefGoogle Scholar
  20. 20.
    Kiousis, D. E., S. F. Rubinigg, M. Auer, and G. A. Holzapfel. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. J. Biomech. Eng. 131:121002, 2009.CrossRefPubMedGoogle Scholar
  21. 21.
    Kiousis, D. E., A. Wulff, and G. A. Holzapfel. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann. Biomed. Eng. 37:315–330, 2009.CrossRefGoogle Scholar
  22. 22.
    Laroche, D., S. Delorme, T. Anderson, and R. DiRaddo. Computer prediction of friction in balloon angioplasty and stent implantation. In: Biomedical Simulation, edited by M. Harders and G. Székely. Springer, 2008, pp. 1–8.Google Scholar
  23. 23.
    Legrand, V., M. Thomas, M. Zelisko, B. De Bruyne, N. Reifart, T. Steigen, D. Hildick-Smith, R. Albiero, O. Darremont, G. Stankovic, M. Pan, J. Flensted Lassen, Y. Louvard, and T. Lefèvre. Percutaneous coronary intervention of bifurcation lesions: state-of-the-art. Insights from the second meeting of the European Bifurcation Club. EuroInternational 3:44–49, 2007.Google Scholar
  24. 24.
    Liao, R., N. E. Green, S. Y. Chen, J. C. Messenger, A. R. Hansgen, B. M. Groves, and J. D. Carroll. Three-dimensional analysis of in vivo coronary stent–coronary artery interactions. Int. J. Cardiovasc. Imaging. 20:305–313, 2004.CrossRefPubMedGoogle Scholar
  25. 25.
    McKelvey, A. L., and R. O. Ritchie. Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall. Mater. Trans. A 32A:731–743, 2001.Google Scholar
  26. 26.
    McNeel, R., and Associates. Rhinoceros—NURBS Modeling for Windows, Version 4.0 User’s Guide. Seattle, Washington, 2008.Google Scholar
  27. 27.
    Mortier, P., M. De Beule, D. Van Loo, B. Verhegghe, and P. Verdonck. Finite element analysis of side branch access during bifurcation stenting. Med. Eng. Phys. 31:434–440, 2009.CrossRefGoogle Scholar
  28. 28.
    Mortier, P., M. De Beule, S. G. Carlier, R. Van Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 130:021018, 2008.CrossRefGoogle Scholar
  29. 29.
    Moses, J. W., M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, and R. E. Kuntz. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323, 2003.CrossRefPubMedGoogle Scholar
  30. 30.
    Ormiston, J. A., M. W. Webster, P. N. Ruygrok, J. T. Stewart, H. D. White, and D. S. Scott. Stent deformation following simulated side-branch dilatation: a comparison of five stent designs. Catheter. Cardiovasc. Interv. 47:258–264, 1999.CrossRefGoogle Scholar
  31. 31.
    Petrini, L., F. Migliavacca, F. Auricchio, and G. Dubini. Numerical investigation of the intravascular coronary stent flexibility. J. Biomech. 37:495–501, 2004.CrossRefGoogle Scholar
  32. 32.
    Philips Medical Systems Nederland B. V., Best, The Netherlands. http://www.healthcare.philips.com.
  33. 33.
    Poncin, P., and J. Proft. Stent tubing: understanding the desired attributes. In: Proceedings of the Materials and Processes for Medical Devices Conference, Anaheim, USA, 2003.Google Scholar
  34. 34.
  35. 35.
    Rieu, R., P. Barragan, C. Masson, J. Fuseri, V. Garitey, M. Silvestri, P. Roquebert, and J. Sainsous. Radial force of coronary stents: a comparative analysis. Catheter. Cardiovasc. Interv. 46:380–391, 1999.CrossRefGoogle Scholar
  36. 36.
    Slager, C. J., J. J. Wentzel, J. C. Schuurbiers, J. A. Oomen, J. Kloet, R. Krams, C. von Birgelen, W. J. van der Giessen, P. W. Serruys, and P. J. de Feyter. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102:511–516, 2000.Google Scholar
  37. 37.
    Squire, J. C. Dynamics of Endovascular Stent Expansion. PhD thesis, Massachusetts Institute of Technology, US, 2000.Google Scholar
  38. 38.
    Wentzel, J. J., D. M. Whelan, W. J. van der Giessen, H. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech. 33:1287–1295, 2000.CrossRefPubMedGoogle Scholar
  39. 39.
    Wu, W., W. Q. Wang, D. Z. Yang, and M. Qi. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40:2580–2585, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Peter Mortier
    • 1
  • Gerhard A. Holzapfel
    • 2
    • 3
  • Matthieu De Beule
    • 1
  • Denis Van Loo
    • 4
  • Yves Taeymans
    • 5
  • Patrick Segers
    • 1
  • Pascal Verdonck
    • 1
  • Benedict Verhegghe
    • 1
  1. 1.IBiTech, Ghent UniversityGhentBelgium
  2. 2.Institute of Biomechanics, Center of Biomedical EngineeringGraz University of TechnologyGrazAustria
  3. 3.Department of Solid Mechanics, School of Engineering SciencesRoyal Institute of Technology (KTH)StockholmSweden
  4. 4.UGCT, Ghent UniversityGentBelgium
  5. 5.Department of CardiologyGhent University HospitalGentBelgium

Personalised recommendations